Proteinuria Proteinuria is a condition characterized by the presence of greater than normal amounts of protein in the urine. It is usually associated with some kind of disease or abnormality but may occasionally be seen in healthy individuals. Plasma, the liquid portion of blood, contains many different proteins. One of the many functions of the kidneys is to conserve plasma protein so that it is not eliminated along with waste products. Types of proteinuria Proteinuria can be divided into three categories: transient (intermittent), orthostatic (related to sitting/standing or lying down), and persistent (always present). Transient proteinuria – Transient (intermittent) proteinuria is by far the most common form of proteinuria. Transient proteinuria usually resolves without treatment. Stresses such as fever and heavy exercise may cause transient proteinuria. Orthostatic proteinuria – Orthostatic proteinuria occurs when one loses protein in the urine while in an upright position but not when lying down. It occurs in 2 to 5 percent of adolescents but is unusual in people over the age of 30 years. The cause of orthostatic proteinuria is not known. Orthostatic proteinuria is not harmful, does not require treatment, and typically disappears with age. Persistent proteinuria – In contrast to transient and orthostatic proteinuria, persistent proteinuria occurs in people with underlying kidney disease or other medical problems. Examples include: Kidney diseases Diseases that affect the kidney, such as diabetes mellitus or high blood pressure Diseases that cause the body to overproduce certain types of protein Pathophysiology Proteinuria is the consequence of two mechanisms: the abnormal transglomerular passage of proteins due to increased permeability of the glomerular capillary wall and their subsequent impaired reabsorption by the epithelial cells of the proximal tubule. In the various glomerular diseases, the severity of disruption of the structural integrity of the glomerular capillary wall correlates with the area of the glomerular barrier being permeated by “large” pores, permitting the passage in the tubular lumen of high-molecular-weight (HMW) proteins, to which the barrier is normally impermeable. The increased load of such proteins in the tubular lumen leads to the saturation of the reabsorptive mechanism by the tubular cells, and, in the most severe or chronic conditions, to their toxic damage, that favors the increased urinary excretion of all proteins, including low-molecular-weight (LMW) proteins, which are completely reabsorbed in physiologic conditions. Causes Diseases of the glomeruli (the kidney’s filtering units), for example, glomerulonephritis or diabetes Urine infection can cause proteinuria, but usually, there are other signs of this – see cystitis/urinary tract infections Proteinuria can also be a symptom of some other conditions and diseases: for example congestive heart failure, the first warning of eclampsia in pregnancy Temporary proteinuria may occur after vigorous exercise or if you have a high fever Risk factors The two most common risk factors for proteinuria are: Diabetes High blood pressure (hypertension) Other types of kidney disease unrelated to diabetes or high blood pressure can also cause protein to leak into the urine. Examples of other causes include: Medications Trauma Toxins Infections Immune system disorders Other risk factors include: Obesity Age over 65 The family history of kidney disease Preeclampsia (high blood pressure and proteinuria in pregnancy) Race and ethnicity: African-Americans, Native Americans, Hispanics, and Pacific Islanders are more likely than whites to have high blood pressure and develop kidney disease and proteinuria. Symptoms Usually, there are no symptoms. When your kidney damage gets worse and large amounts of protein escape through your urine, you may notice the following symptoms: Foamy, frothy or bubbly-looking urine when you use the toilet Swelling in your hands, feet, abdomen or face Other symptoms of Proteinuria can include: Weight gain caused by fluid retention Diminished appetite Hypertension Complications Proteinuria complications depend on the underlying cause of the condition. Generally, protein in urine is associated with kidney disease, so kidney function may begin to decline over time. You may also experience high blood pressure and high cholesterol, which can further be damaged the kidneys if not managed properly. Proteinuria may progress to renal impairment or chronic kidney disease. Patients with proteinuria are also at risk of cardiovascular disease. Diagnosis and Test Physical examination is of limited use, but vital signs should be reviewed for increased BP, suggesting glomerulonephritis. The examination should seek signs of peripheral edema and ascites, reflective of fluid overload or low serum albumin. Lab tests Screening for protein in the urine may be performed as part of a general health exam or as part of a check-up for an individual who is known to have a condition that may cause proteinuria. Some screening tests include: Urine protein – detects the presence of any type of protein that may be in the urine. It can be performed alone on a random urine sample or as part of a urinalysis. Urinalysis – an evaluation of a urine sample for several different substances that may be in the urine, including protein. This test may be used as part of a general health exam. Urine albumin (microalbumin) – a sensitive test that is used to monitor people with diabetes for small amounts of albumin, the main blood protein, in the urine. In addition to testing urine, there are several other tests that may be used to evaluate kidney function and/or assess the nature of the protein present in the urine. BUN (Blood Urea Nitrogen) and Creatinine – blood tests used to evaluate kidney function; urea and creatinine are nitrogen-containing waste products that healthy kidneys move from the blood to the urine. eGFR (estimated Glomerular Filtration Rate) – uses a blood creatinine level along with age and values assigned for sex and race to calculate the estimated rate of urine filtration; the eGFR rate decreases with progressive kidney damage. Creatinine clearance – measures creatinine in a 24-hour urine sample and a blood sample to calculate the amount of creatinine that has been cleared from the blood and passed into the urine; this calculation allows for a general evaluation of kidney function based on the rate of creatinine excretion from the body. Total Protein (TP) – a blood test that measures all of the protein in the serum Albumin – a blood test that measures the concentration of albumin (the most prevalent protein in blood serum) Serum protein electrophoresis – determines the types and relative amounts of protein in blood serum and is compared to the urine electrophoresis pattern to determine if blood is the source of the protein seen in the urine Serum Free Light Chains (SFLC) – a blood test used to help diagnose and monitor conditions associated with an increased production of free light chains such as multiple myeloma The recommended baseline measures of albumin/creatinine or protein/creatinine ratio (ACR or PCR) are given in the following table. ACR (mg/mmol) PCR (mg/mmol) Implications ACR >3 >15 Abnormal and adequate to define CKD G1 or G2. 30 50 Favour ACE inhibitor/ ARB if hypertensive Suffix A3 if ACR > 30 mg/mmol on CKD stage 70 100 Stricter BP limits apply Referral threshold in non-diabetics >250 >300 Sometimes referred to as “nephrotic range” proteinuria In the presence of edema and hypoalbuminemia, sufficient to define the “nephrotic syndrome” Treatment and Medications Medical management of proteinuria has the following two components: Nonspecific treatment: Treatment that is applicable irrespective of the underlying cause, assuming the patient has no contraindications to the therapy Specific treatment: Treatment that depends on the underlying renal or non-renal cause and, in particular, whether or not the injury is immune-mediated Medications Angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs) reduce intra-glomerular pressure by inhibiting angiotensin II-mediated efferent arteriolar vasoconstriction. These drugs also have a proteinuria-reducing effect that is independent of their antihypertensive effect. Natural remedies Ѕhоrtаgеs of these nutrіеnts mау саusе mаnу соmрlісаtіоns, whісh саn аfflісt раtіеnts а lоt. Тhе fооds below саn help them to іmрrоvе this соndіtіоn. Раtіеnts should еаt more fооds rісh in mаgnеsіum, like millet, whеаt, and bаrlеу. You саn find zinc in millet, whеаt, соrn and саrrоt. Ѕtrаwbеrrу, саrrоts, оrаngе are rісh in vіtаmіn С. Prevention and Cure Get regular blood and urine tests if you feel that you are at risk for proteinuria. Balance your diet follow your doctors recommend. Eat lots of fiber, up to 55g each day in the form of whole grains, fresh vegetables, and even supplements if necessary. Keep your condition controlled if you happen to have hypertension, diabetes or both. While these conditions put you at risk for proteinuria, you can prevent a problem by using your medication, a healthy diet and exercise to keep your symptoms under control. If you are struggling with your symptoms, speak to your doctor as soon as possible for ways to further manage your condition.
Helpful and informative Post Dr thanks
Good post and better description of pratenuriA
Good description about proteinuria n its prognosis thnx Dr for sharing
Cases that would interest you
- Login to View the image
✍️✍️Late Effects Of Blood And Marrow Transplantation ___________________________________________ Abstract Hematopoietic cell transplantation is a curative treatment for a variety of hematologic diseases. Advances in transplantation technology have reduced early transplant-relatedmortality and expanded application of transplantation to older patients and to a wider variety of diseases. Management of late effects after transplantation is increasingly important for a growing number of long-term survivors that is estimated to be half a million worldwide. Many studies have shown that transplant survivors suffer from significant late effects that adversely affect morbidity, mortality, working status and quality of life. Late effects include diseases of the cardiovascular, pulmonary, and endocrine systems, dysfunction of the thyroid gland, gonads, liver and kidneys, infertility, iron overload, bone diseases, infection, solid cancer, and neuropsychological effects. The leading causes of late mortality include recurrent malignancy, lung diseases, infection, secondary cancers and chronic graft-versus-host disease. The aim of this review is to facilitate better care of adult transplant survivors by summarizing accumulated evidence, new insights, and practical information about individual late effects. Further research is needed to understand the biology of late effects allowing better prevention and treatment strategies to be developed. Introduction Hematopoietic cell transplantation (HCT) is a curative treatment for a variety of hematologic diseases.1 The safety of HCT has improved over the decades,2 indications for HCT have expanded to older patients,3 and almost all patients are able to find suitable allogeneic donors by the growing use of cord blood4 and haploidentical transplantation.5 These current conditions have contributed to a growing number of HCT survivors, estimated to be half a million worldwide.6 Patients who are disease-free at two or five years after HCT have a greater than 80% subsequent 10-year survival rate,7–10 but many studies show that HCT survivors suffer from significant late effects that adversely affect morbidity, mortality, working status and quality of life.7–13 A prospective observational study of 1022 survivors who underwent HCT between 1974 and 1998 showed that 66% of the survivors had at least one chronic condition and 18% had severe or life-threatening conditions.14 A retrospective study of 1087 contemporary survivors also showed that the cumulative incidence of any non-malignant late effect at five years after HCT was 45% among autologous and 79% among allogeneic recipients, and 2.5% of autologous and 26% of allogeneic recipients had three or more late effects.15 Life expectancy among 5-year survivors remained 30% lower compared with the general population, regardless of their current ages and years since HCT.9 The leading causes of excess deaths in 5-year survivors included secondary malignancies (27%) and recurrent disease (14%), followed by infections (12%), chronic graft-versus-host disease (GvHD) (11%), cardiovascular diseases (11%), and respiratory diseases (7%).9 The aim of this review is to facilitate better care of adult HCT survivors by summarizing accumulated evidence, new insights, and practical information about individual late effects (Figure 1). Recurrent disease and chronic GvHD are not discussed and readers are referred to other reviews.16–20 Figure 1. Download figure Open in new tab Download powerpoint Figure 1. Late effects of blood and marrow transplantation. Cardiovascular diseases Cardiovascular diseases (CVD) after HCT include cardiomyopathy, congestive heart failure, valvular dysfunction, arrhythmia, pericarditis, and coronary artery disease.21 Their cumulative incidences were 5%–10% at ten years after HCT,22–24 accounting for 2%–11% of mortality among long-term survivors.8,9,25 The incidence of CVD and its associated mortality were 1.4–3.5-fold higher compared with the general population.8,9,24,25 HCT survivors are more likely to have conventional risk factors such as dyslipidemia and diabetes than the general population.26 Early diagnosis and treatment of modifiable risk factors is important. We usually treat hypertension more than 140/90 mmHg on 2 separate visits or more than 130/80 mmHg for patients with diabetes or renal disease.27 The first step is lifestyle modification including weight reduction, dietary sodium reduction and regular physical activity, followed by initiating antihypertensive drugs such as angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs). Anthracycline exposure and chest radiation are the major risk factors for CVD after HCT.21 Several studies showed that dexrazoxane, ACE inhibitors, ARBs and beta-blockers can prevent anthracycline-related cardiomyopathy in the non-HCT setting.28–32 Once cardiomyopathy is established, it is important to initiate appropriate treatment. ACE inhibitors and beta-blockers have been effective in improving left ventricular function.33 Pulmonary diseases Non-infectious late complications of the lung include bronchiolitis obliterans syndrome (BOS), cryptogenic organizing pneumonia (COP) and pulmonary hypertension. BOS represents chronic GvHD of the lung, and is characterized by the new onset of fixed airflow obstruction after allogeneic HCT.34 According to the strict 2005 National Institutes of Health (NIH) diagnostic criteria for chronic GvHD, incidence of BOS was 5.5% and its prevalence was 15% among patients with chronic GvHD.35 Symptoms of BOS include dyspnea on exertion, cough and wheezing, but early BOS may be asymptomatic until significant lung function is lost.36 One study showed rapid decline in %FEV1 during the six months before BOS diagnosis, with a lower %FEV1 at diagnosis associated with worse survival.37 In our practice, we perform pulmonary function tests every three months including %FEV1 and FEV1/FVC among patients with active chronic GvHD. When testing shows significant new airflow obstruction, we repeat testing every month until stability is confirmed.38 Plasma matrix metalloproteinase 3 levels39 and parametric response mapping from CT scans40 might be useful diagnostic tests for BOS but these have not yet entered clinical practice. Standard treatment of BOS is prednisone at 1 mg/kg per day, followed by a taper to reach a lower, alternate-day regimen.38 A multicenter prospective study showed that addition of FAM (inhaled fluticasone propionate at 440 μg twice a day, azithromycin at 250 mg taken 3 days per week, and montelukast at 10 mg nightly) to prednisone treatment stabilized pulmonary function in 70% of patients with newly diagnosed BOS and permitted systemic steroid exposure to be reduced.41 Cryptogenic organizing pneumonia is a disorder involving bronchioles, alveolar ducts, and alveoli, the lumen of which become filled with buds of granulation tissue consisting of fibroblasts.42 Clinical symptoms include dry cough, shortness of breath, and fever. Bronchoalveolar lavage is performed to exclude infection. Lung biopsy is required for definitive diagnosis, but an empiric diagnosis is often based on radiographic findings of diffuse, peripheral, fluffy infiltrates consistent with airspace consolidation. Pulmonary function testing shows restrictive changes and low diffusing capacity of the lungs for carbon monoxide. The incidence of COP is 2%–10%,43,44 and it is strongly associated with acute and chronic GvHD.45 COP usually responds within 5–7 days to prednisone at 1 mg/kg per day, which is continued for one month followed by a slow taper over five months because COP can often recur. Small case series suggest potential benefits of macrolides for treatment of COP.46 Pulmonary hypertension is an uncommon but potentially fatal complication after HCT, with a reported prevalence of 2.4%.47 The most common symptoms are hypoxia, tachypnea, dyspnea, and acute respiratory failure,48 and if untreated, pulmonary hypertension can result in a progressive increase in pulmonary vascular resistance, right ventricular failure and death. Since initial symptoms are non-specific, it is likely to be underdiagnosed after HCT. Although cardiac catheterization is the gold standard for diagnosis of pulmonary hypertension, high-resolution chest computed tomography and echocardiography are non-invasive and useful diagnostic modalities. The most common types are pulmonary arterial hypertension and pulmonary veno-occlusive disease, sometimes associated with transplant-associated microangiopathy and inherited or acquired hemolytic anemia.48 First-line therapies are supplemental oxygen and phosphodiesterase-5 inhibitors, followed by inhaled nitric oxide, diuretics, bipyridine inotropes and after-load reducing agents.48 Endocrine diseases Major late effects in the endocrine system include thyroid dysfunction, diabetes, dyslipidemia, and adrenal insufficiency. Hypothyroidism occurs in 30% of patients by 25 years after HCT.49 Risk factors include age under ten years, conditioning containing radiation, busulfan or cyclophosphamide, and hematologic malignancies.49,50 The international guidelines recommend checking serum thyroid-stimulating hormone and free thyroxine levels every year.21 For patients who received radiolabeled iodine antibody therapy, thyroid function should be checked earlier starting at three and six months after HCT, and other times as clinically indicated. Standard criteria are used to initiate replacement therapy for hypothyroidism. Some patients develop hyperthyroidism after HCT as a rare complication.51 Diabetes occurs in 8%–41% of patients after allogeneic HCT and in 3% of patients after autologous HCT.15,52,53 Its incidence after allogeneic HCT is 3.65 times higher compared with their siblings.54 Initial treatment is therapeutic lifestyle counseling, but many patients require hypoglycemic agents or insulin. Dyslipidemia occurs in 9%–61% of HCT survivors.53,55 Despite no established consensus for management of dyslipidemia after HCT, our practice is to initiate therapeutic lifestyle counseling followed by statin therapy when LDL cholesterol exceeds 130–190 mg/dL according to the estimated risk of CVD, based on the National Cholesterol Education Program Adult Treatment Panel III guidelines56 and the recently suggested approach after allogeneic HCT.57 The 2013 ACC/AHA guidelines do not specify the targeted levels for LDL cholesterol, and addition of statin therapy is based on calculated risk for future cardiovascular events.58 Addition of omega-3-acid ethyl esters or fibrate is considered when fasting triglycerides exceed 200–499 mg/dL. Adrenal insufficiency occurs in 13% of patients after allogeneic HCT and 1% of patients after autologous HCT,15 and can be confirmed by a cortisol-stimulation test. Once adrenal insufficiency is diagnosed, physiological glucocorticoid replacement and a very slow terminal taper is needed. Patients should carry notification that they have adrenal insufficiency to alert emergency medical providers. For chronic GvHD therapy, the risk of adrenal insufficiency is lower with alternate-day administration of corticosteroids than with daily dosing,59 although patients with brittle diabetes need daily dosing to allow for optimal glucose control. Male gonadal dysfunction and infertility Hypogonadism is common after HCT. Impaired spermatogenesis, erectile dysfunction, low testosterone, and low libido occur in male patients. Erectile dysfunction and low libido have been associated with both physical and psychosocial factors.60,61 Testosterone replacement may be considered for patients with low testosterone levels and has improved sexual function, libido and bone mass, although monitoring prostate-specific antigen and testosterone levels is necessary.62,63 Azoospermia occurred in 70% of male patients, and spermatogenesis recovered in 90% of patients conditioned with cyclophosphamide alone, in 50% of patients conditioned with cyclophosphamide plus busulfan or thiotepa, and in 17% of patients conditioned with total body irradiation (TBI).64 Semen banking or cryopreservation of testicular tissue should be discussed before HCT with patients desiring fertility. Female gonadal dysfunction, infertility and pregnancy Ovarian insufficiency, vaginal changes and low libido occur in female patients. A historical study showed that ovarian failure occurred in more than 90% of female patients after HCT and recovered in 92% of patients conditioned with cyclophosphamide alone, but only in 24% of patients conditioned with cyclophosphamide and TBI.65 A pilot study showed that only 10% of patients had ovarian failure after reduced-intensity allogeneic HCT.66 The use of hormone replacement therapy for premature ovarian failure should be individualized based on the patient age, severity of menopausal symptoms, low bone density, risk of breast cancer, clotting predisposition and liver abnormalities.67 Since efficacy of gonadotropin-releasing hormone agonists in preserving fertility in cancer patients is controversial,68,69 cryopreservation of oocytes, ovarian tissue, or embryos should be discussed with patients desiring fertility.70 The largest study of pregnancy after HCT showed that 0.87% of patients or their partners had pregnancies after allogeneic HCT, and 0.36% of those after autologous HCT.71 We generally recommend that women wait 2–5 years after HCT before attempting conception since rates of relapse are generally highest in the first two years after HCT. Another concern is the theoretical risk of recurrent malignancy because of disturbance of the graft-versus-leukemia effect, and some cases of recurrent chronic myeloid leukemia after conception have been reported.71 Pregnancy outcomes are generally good with no increase in the risk of fetal malformations, although these pregnancies are considered high risk because of higher maternal risks of pregnancy complications.71 Iron overload Iron overload is rare after autologous HCT72 but common after allogeneic HCT.73,74 Previous prospective studies showed that 30%–60% of long-term survivors of allogeneic HCT had elevated serum ferritin levels and 25%–50% had elevated liver iron concentration on T2* magnetic resonance imaging (MRI).73,74 Since serum ferritin does not specifically reflect iron overload and can be elevated in hepatic and systemic inflammation, additional testing is required if the ferritin is elevated. We favor transferrin saturation, which is widely available and defined as the ratio of serum iron concentration divided by total iron-binding capacity.75 Normal transferrin saturation is less than 50% in males and less than 45% in females. Patients with iron overload usually have saturation more than 60%. HFE genotyping is considered in patients with a family history of hemochromatosis and in patients of Northern or Western European ethnicity. When saturation is not elevated, other etiologies for an elevated ferritin including inflammation, metabolic syndrome, and alcoholism should be ruled out. The most accurate test of tissue iron concentration is liver biopsy, but the procedure is invasive and may cause serious complications. Thus, T2* MRI and other modalities (FerriScan and superconducting quantum interference device) have been increasingly used.76 Importantly, liver tests are often normal among long-term survivors with iron overload, so hepatitis and GvHD should also be considered when results of liver tests are elevated.77 Iron overload may cause cardiomyopathy. Studies of thalassemia patients showed that cardiomyopathy typically took more than ten years to be clinically evident,78 and that many patients improved with intensive chelation therapy.79 Although a prospective study and a meta-analysis showed no statistical association of liver iron concentration with mortality after allogeneic HCT,80,81 our practice is to start phlebotomy of 5 mL/kg or 250–300 mL every 3–4 weeks as long as hematocrit is more than 35% until serum ferritin falls below 1000 ng/mL. Deferasirox, an oral chelating agent, is considered for patients with anemia precluding phlebotomy. Liver diseases Late liver diseases include chronic hepatitis B, chronic hepatitis C, liver cirrhosis, nodular regenerative hyperplasia and focal nodular hyperplasia.77 Hepatitis B-infected patients have an increased risk of fulminant liver failure. One study reported a 35% risk of HBV reactivation after HCT even among patients with isolated anti-HBc antibodies, mostly during steroid treatment for GvHD.82 Patients treated with anti-CD20 antibodies have an increased risk of HBV reactivation. Antiviral prophylaxis using entecavir or lamivudine will prevent almost all fulminant cases if initiated before the start of conditioning regimens in patients with positive blood HBV DNA levels.83 Patients with latent HBV (i.e. anti-HBc+/HBV DNA−) should be monitored monthly with HBV DNA levels after HCT and antiviral treatment should be initiated when viremia is detected.83 Hepatitis C virus infection in HCT survivors almost always results in chronic hepatitis.84,85 Typically, asymptomatic elevation of alanine aminotransferase occurs 2–4 months after HCT, coinciding with tapering of immunosuppressive medications. There may be little liver-related mortality in the first ten years after HCT,84 but liver cirrhosis occurs later with a cumulative incidence of 4%–24% at 20 years.85,86 A large retrospective study showed that hepatitis C-infected patients had an increased risk of 2-year non-relapse mortality due to hepatic problems and bacterial infection.87 Antiviral therapy for HCV has not been given early after HCT, but may improve both oncological and hepatic outcomes after HCT.88 Ribavirin and interferon-based therapy have been used for patients who have discontinued all immunosuppressive medications without active GvHD, but it can cause pancytopenia and GvHD. Recently, highly effective and well tolerated direct acting antiviral agents with more than 90% rates of sustained virological response have been developed, and interferon-free regimens are now the treatments of choice.89,90 Nodular regenerative hyperplasia is a rare liver condition characterized by a widespread benign transformation of the hepatic parenchyma into small regenerative nodules.77 This process is usually asymptomatic unless portal hypertension develops. Focal nodular hyperplasia occurs in 12% of HCT survivors, and possibly reflects sinusoidal injury caused by myeloablative conditioning regimens.91 Kidney diseases Chronic kidney disease (CKD) is defined as an elevated serum creatinine level, or a decreased glomerular filtration rate (GFR) less than 60 mL/min/1.73 m2 for three months or longer.92 CKD occurs in approximately 20% of HCT recipients.93–95 There are three major etiologies of CKD after HCT: thrombotic microangiopathy (TMA), nephrotic syndrome and idiopathic CKD. Other etiologies include persistent acute kidney injury and BK virus nephropathy.96 Whenever possible, renal biopsy should be considered to accurately diagnose the etiology of CKD and to provide appropriate management.97 Thrombotic microangiopathy occurs in 2%–21% of patients after HCT, and is characterized by renal dysfunction, thrombocytopenia, neurological dysfunction, hemolytic anemia with schistocytes, elevated lactate dehydrogenase and decreased haptoglobin.98,99 Risk factors of TMA include TBI, calcineurin inhibitors, and acute and chronic GvHD.100–102 TMA-related kidney injury often improves with tapering or stopping calcineurin inhibitors, but full renal function is rarely restored.103 In some cases TMA did not improve until GvHD was treated.104 Efficacy of plasma exchange is limited.105 Nephrotic syndrome occurs in 6%–8% of patients after allogeneic HCT.106,107 Membranous nephropathy comprised 61% of cases, and minimal change disease comprised 22% of cases, with a median onset of 14 months and eight months after HCT, respectively.108 Mechanisms of membranous nephropathy are thought to be formation of immune complexes through allo- or auto-antibodies recognizing antigens expressed by the podocyte, while T cells are implicated with minimal change disease.109 Nephrotic syndrome after HCT is often associated with chronic GvHD and tapering of immunosuppressive medications. Initial treatment is prednisone 1 mg/kg/day in addition to calcineurin inhibitors. Complete response was observed in 90% of patients with minimal change in disease, but only in 27% of patients with membranous nephropathy.108 Refractory cases may be treated with rituximab or mycophenolate mofetil.110 Idiopathic CKD comprises most cases of CKD. Risk factors include acute GvHD, chronic GvHD, acute kidney injury, long-term use of calcineurin inhibitors and previous autologous HCT,94,111 suggesting that GvHD, accompanying treatment and inflammatory conditions may have pathogenic roles in this entity. Associations of TBI with risk of CKD have been controversial.94,112 ACE inhibitors and ARBs have been used to treat CKD and hypertension associated with CKD.113 Bone diseases Late complications of bone include osteopenia, osteoporosis and avascular necrosis (AVN).114 Osteoporosis has been reported in as many as 50% of HCT recipients.115,116 The diagnoses of osteopenia and osteoporosis are made by measuring T-scores with dual-energy X-ray absorptiometry. A T-score between −1.0 and −2.5 indicates osteopenia, and a T-score less than −2.5 or presence of a fragility fracture indicates osteoporosis.117 Multiple risk factors are implicated including chemotherapy, radiation, corticosteroids, calcineurin inhibitors, vitamin D deficiency, and gonadal failure.116,118 Bone loss occurs within 6–12 months after HCT, and recovery of bone mineral density (BMD) begins from the lumber spine, followed by a slower recovery in the femoral neck. The use of corticosteroids is the strongest risk factor for osteoporosis. General preventative recommendations include adequate intake of calcium of 1200 mg per day or over and vitamin D of 1000 IU (25 μg) per day or over, regular weight-bearing exercise, and avoidance of smoking and excessive alcohol. Bisphosphonates are the primary treatment for bone loss.119 Patients who are taking 5 mg or more daily prednisone-equivalent steroids for three months or more should have screening BMD tests for osteoporosis, and bisphosphonate treatment may be indicated until corticosteroid treatment is discontinued or for up to five years.120 Second-line treatment includes calcitonin, raloxifene, denusomab, romosozumab, and blosozumab, though their reported use in HCT recipients is limited and adverse effects may be more prominent than with the bisphosphonates. Avascular necrosis occurs in 4%–19% of HCT survivors with a cumulative incidence of 3%–10% at five years after HCT.121,122 AVN causes severe bone pain and bone destruction, causing significant impairment in quality of life. AVN typically affects the femoral heads, but sometimes affects other joints such as the knee and shoulders.21 Risk factors for AVN include corticosteroids, calcineurin inhibitors, older age and TBI conditioning.114 When AVN is suspected, diagnostic MRI should be performed. Early involvement of an orthopedic specialist is important for management of AVN, including conservative treatment, joint-preserving surgery and joint replacement surgery.21,114 Infectious diseases All HCT survivors have some degree of immunodeficiency, particularly during the first year after HCT.123 If patients are able to stop immunosuppressive medications without GvHD or recurrent disease, many recover adequate immune function by one year after HCT. Patients with chronic GvHD, however, remain immunodeficient and have a high risk of infections. Common late infections are caused by Pneumocystis jirovecii, encapsulated bacteria, fungi, varicella-zoster virus (VZV), cytomegalovirus, and respiratory viruses. Patients may report more frequent episodes of upper respiratory infections and sinusitis. All patients should receive prophylaxis against Pneumocystis jirovecii for at least one year after HCT or until 3–6 months after all immunosuppressive medication is discontinued, whichever occurs later. The preferred drug is trimethoprim-sulfamethoxazole, but dapsone or atovaquone could be substituted for patients who are allergic to or intolerant of trimethoprim-sulfamethoxazole. In particular, patients with chronic GvHD are highly susceptible to encapsulated bacteria such as Streptococcus pneumoniae, Haemophilus influenzae and Neisseria meningitidis due to low levels of opsonizing antibodies, low CD4+ T-cell counts, poor reticuloendothelial function and suppressive effects of immunosuppressive medications on phagocytosis. Vaccination against these bacteria is recommended.124 Efficacy of vaccination in increasing antibody levels has been shown in several prospective studies.125,126 Chemoprophylaxis is always recommended due to the unpredictable protection provided by vaccination. The first-line drug is trimethoprim-sulfamethoxazole, but if it is not tolerated, penicillin or azithromycin is substituted until 3–6 months after discontinuation of all immunosuppressive medications. Invasive fungal infection occurs in 1% of patients after autologous HCT and in 6%–8% of patients after allogeneic HCT.127 GvHD and long-term use of corticosteroids have been a major risk factor associated with onset of invasive fungal infection.128 As recommended in the European guidelines, mold prophylaxis with posaconazole or voriconazole may be considered for patients with GvHD requiring high-dose corticosteroid treatment.129 Varicella-zoster virus-seropositive patients should receive prophylaxis with acyclovir or valacyclovir during the first year after HCT or until six months after discontinuation of immunosuppressive medications. A standard dose of acyclovir is 800 mg twice daily,130 but some studies showed that 200 mg once daily was effective in preventing VZV reactivation.131 Acyclovir should be started empirically if the patient presents with an acute abdomen or hepatitis typical of fulminant visceral VZV infection.132 CMV monitoring in blood is continued beyond 100 days after HCT until one year for patients at risk of late CMV disease, including CMV-seropositive patients receiving high-dose corticosteroids, those who have already experienced CMV reactivation, and cord blood transplantation.133 Pre-emptive therapy is usually considered for CMV levels of 250 IU/mL or more (equivalent to ≥1000 copies/mL) or a positive antigenemia test. Community-acquired respiratory virus infections are an important cause of morbidity and mortality after HCT. The most frequent viruses include rhinovirus, respiratory syncytial virus (RSV), parainfluenza viruses (PIV), human metapneumovirus, and influenza viruses as these frequently cause lower respiratory tract disease associated with 12%–100% mortality.134 An immunodeficiency scoring index can predict severity of RSV infection.135 Aerosolized ribavirin showed efficacy in treating lower tract RSV after HCT.136 Combination therapy with immunomodulators such as intravenous immunoglobulin or palivizumab has been seen to have variable success.137 Treatment for PIV infection has not been established. Efficacy of ribavirin has been limited for patients with lower respiratory tract infection of PIV.138 Novel drugs such as a recombinant sialidase fusion protein and a hemagglutinin-neuraminidase inhibitor are under investigation.138 Solid cancers There is an increased risk of solid cancers following both autologous and allogeneic HCT compared with the general population. The cumulative incidence is 1%–6% at ten years after HCT, and continues to rise over time without a plateau.139–142 The most common sites include oral cavity, skin, breast and thyroid, but rates are also elevated in esophagus, liver, nervous system, bone and connective tissues compared with the general population.143 Myeloablative TBI, young age at HCT, chronic GvHD and prolonged immunosuppressive medications beyond two years are well-documented risk factors for many types of cancers.143 All HCT recipients should be advised of the risk of second cancers and should be encouraged to undergo recommended screening tests based on their predisposition.143 The 5-year overall survival rates after diagnosis of solid cancers varied by cancer site, with 88%–100% for thyroid, testis and melanoma, approximately 50% for breast, mouth, soft tissue and female reproductive organs, and 20% or less for bone, lower gastrointestinal tract, and central nervous system.144 These rates were similar to those of de novo cancers, except that rates were lower for female reproductive organs, bone, colorectum, and central nervous system, although further studies are warranted to confirm this observation. There is emerging evidence that human papilloma virus (HPV) is involved in the pathogenesis of squamous cell cancer after HCT.145,146 The efficacy of HPV vaccination in preventing squamous cell cancer after HCT remains to be determined in prospective studies.147 Neuropsychological effects Neuropsychological effects after HCT are being increasingly recognized and include, among others, depression, post-traumatic stress disorder, and neurocognitive deficits. Depression occurs in 12%–30% of HCT survivors and is more frequent in female patients, younger patients and those with poor social support, history of recurrent disease, chronic pain, and chronic GvHD.148 Post-traumatic stress disorder occurs in 28% of patients at six months after HCT and may persist for 5%–13% of cases, although its risk factors are not yet clear.148–150 Neurocognitive deficits, so called “chemo brain”, have adverse functional impacts on HCT survivors who return to work and daily activities that require short-term memory, information-processing speed, multitasking and co-ordination.151 Neuropsychological tests can help identify neurocognitive deficits. Most evidence is derived from studies of breast cancer survivors, with estimated rates of deficits ranging from 16% to 50% up to ten years after treatment.152,153 Potential mechanisms for chemotherapy-induced neurocognitive changes include cytokine and immune dysregulation, damage to DNA and telomere length through cytotoxic agents, oxidative stress and hormonal changes.154 In cases of HCT survivors, there may be additional deficits derived from neurological complications including nervous system infection (HHV-6, fungi, etc.), immune-mediated damage, and toxicities of calcineurin inhibitors such as TMA and posterior reversible encephalopathy syndrome. A prospective observational study showed that neurocognitive function declined substantially at 80 days after HCT, returned to pre-transplantation levels at one year, and continued to improve between one and five years after HCT, except for motor dexterity and verbal learning and retention.155 Mostly mild, neurocognitive dysfunction according to the Global Deficit Score persisted at five years in 42% of long-term survivors.155 Rehabilitation programs have succeeded in improving neurocognitive functions,156 and methylphenidate and modafinil have demonstrated variable efficacies to improve neurocognitive function in non-HCT cancer patients.157,158 Efficacies of these interventions remaine to be determined among HCT survivors. Influence of newer practices on late effects An understanding of the influence of newer practices such as cord blood transplantation, non-TBI or reduced-intensity conditioning regimens and older patients on the incidence and severity of late effects awaits longer follow up. For example, TBI is associated with an increased risk of many late effects such as cardiovascular diseases, COP, hypothyroidism, diabetes, dyslipidemia, infertility, TMA-related kidney injury, bone density loss, avascular necrosis, and secondary solid cancer.49,54,100,102,114,118,143,159,160 The use of non-TBI conditioning regimens might reduce the burden of these late effects among HCT survivors. Some studies found that cumulative incidences of late effects did not differ much after reduced-intensity regimens compared with myeloablative regimens,15,161 and reduced-intensity conditioning was associated with a higher risk of recurrent malignancy among patients with myeloid malignancy.162 One study showed that the risk of AVN was elevated after cord blood transplantation, but graft source had a limited influence on other long-term health status and QOL.163 Consensus guidelines for late effects and prevention behaviors Incidence, mortality, morbidity and management of individual late effects are summarized in Tables 1 and 2. Recognizing the importance of managing late effects after HCT, the Center for International Blood and Marrow Transplant Research (CIBMTR), the European Group for Blood and Marrow Transplantation (EBMT), and the American Society for Bone Marrow Transplantation (ASBMT) developed recommendations in 2006 for screening and prevention practices for HCT survivors.164 Consensus recommendations were up-dated in 2011 including other international transplant communities.21 The NIH convened working groups to formulate late effects initiatives in 2015.148,165–169 View inlineDownload powerpoint Table 1. Late effects after blood and marrow transplantation View inlineDownload powerpoint Table 2. Tests, preventive approaches and treatment of late effects. Despite higher levels of engagement with health care providers, HCT survivors had similar health and prevention behaviors as matched untransplanted controls, suggesting the need for further education of both HCT survivors and health practitioners.170 Major modifiable predictors of lower adherence to preventive care practices were concerns about medical costs and lack of knowledge.171 Conclusion While the number of HCT survivors is growing, there is no evidence that the burden of late effects is lessening. HCT survivors face myriad late effects that can limit their functioning, require prolonged or life-long medical treatment, reduce their quality of life and also shorten their survival. To the extent that the HCT procedure itself causes these late effects, the transplant community has a responsibility to appropriately monitor, treat and ultimately try to prevent late effects. Given the dispersion of survivors and the varied structure of health care, hematologists, oncologists, primary care physicians and medical subspecialists are all involved in providing this care. Further research is needed to understand the biology of late effects to help identify better prevention and treatment strategies
Dr. Ved Srivastava3 Likes6 Answers - Login to View the image
23 yrs old female pt came with the complaints of bilateral pedal edema for the past 8 yrs..how to approach this case?
Dr. Suresh Narayanan7 Likes24 Answers - Login to View the image
young female with white nails Differential Diagnosis
Dr. Neki Yadav3 Likes28 Answers - Login to View the image
CAUSES OF NON-IMMUNE HYDROPS FETALIS (NIHF). NIHF is extracellular accumulation of gluid in soft tissues and serous cavities of the fetus without any identifiable circulating antibody against red blood cell antigen. CAUSES :Classified as maternal,placental and fetal causes. MATERNAL : 1.Anemia. 2.Pre eclampsia. 3.Hypoalbuminemia. 4.Diabetes mellitus. PLACENTAL : 1.Chorioangioma. 2.Compression /torsion of umbilical cord. FETAL : 1.HEMATOLOGICAL CAUSES : *Twin-to-twin transfusion. *Chronic fetomaternal transfusion. *Homozygous alpha thalassemia. 2.CARDIOVASCULAR CAUSES: *Congenital cardiac abnormalities. tetralogy of fallot. ASD ,VSD , Subaortal stenosis. dysrrhythmias. hypoplasio cordis. *Vascular tumours. *Arteriovenous malformations. *Vena cava inferior thrombosis. *Endocardial fibroelastosis calcifications in the pericardial sac. *Myocarditis (coxsackie,CMV,parvovirus B-19) 3.INFECTIOUS CAUSES : *Toxoplasmosis. *Parvovirus B-19. *CMV hepatitis,Myocarditis. *Coxsackie virus. *Syphilis. *HSV. *Leptospirosis. 4.RENAL DISORDERS : *Congenital nephrotic syndrome with hypoproteinemia. *Obstructive uropathy. *Polycystic kidney disease. *Hydrometrocolpos. *Hypoplastic kidneys. *Prune-belly syndrome. 5.GASTROINTESTINAL DISORDERS : *Diaphragmatic hernia. *Midgut volvulus. *Gastrointestinal obstructions. *Meconium peritonitis. *Hepatic disorders like cirrhosis and necrosis. 6.CHROMOSOMAL ABNORMALITIES : *Trisomies 13,18,21. *Mosaicisms. *Unbalanced tranlocations &triploidy. *Turner syndrome. 7.METABOLIC DISORDERS :. *Cerebrosidosis.(Gaucher's disease) *Gangliosidosis GM 1 Type I. *Mucopolysaccharidosis. *Mucoliposis. 8.PULMONARY CAUSES : *Congenital adenomatoid malformations. *Pulmonary lymphangiectasia. *Pulmonary leiomyosarcoma. *Diaphragmatic hernia. *Alveolar cell adenoma of lung.
Dr. Suvarchala Pratap15 Likes12 Answers - Login to View the image
You can find here key changes in ADA guidelines. They are published in Diabetes Care once yearly in the month of January. GENERAL CHANGES The field of diabetes care is rapidly changing as new research, technology, and treatments that can improve the health and well-being of people with diabetes continue to emerge. With annual updates since 1989, the ADA has long been a leader in producing guidelines that capture the most current state of the field. To that end, the “Standards of Medical Care in Diabetes” now includes a dedicated section on Diabetes Technology, which contains preexisting material that was previously in other sections that has been consolidated, as well as new recommendations. SECTION 1. IMPROVING CARE AND PROMOTING HEALTH IN POPULATIONS Additional information was included on the financial costs of diabetes to individuals and society. Because telemedicine is a growing field that may increase access to care for patients with diabetes, discussion was added on its use to facilitate remote delivery of health-related services and clinical information. SECTION 2. CLASSIFICATION AND DIAGNOSIS OF DIABETES Based on new data, the criteria for the diagnosis of diabetes was changed to include two abnormal test results from the same sample (i.e., fasting plasma glucose and A1C from same sample). The section was reorganized to improve flow and reduce redundancy. Additional conditions were identified that may affect A1C test accuracy including the postpartum period. SECTION 3. PREVENTION OR DELAY OF TYPE 2 DIABETES This section was moved and is now located before the Lifestyle Management section to better reflect the progression of type 2 diabetes. The nutrition section was updated to highlight the importance of weight loss for those at high risk for developing type 2 diabetes who have overweight or obesity. Because smoking may increase the risk of type 2 diabetes, a section on tobacco use and cessation was added. SECTION 4. COMPREHENSIVE MEDICAL EVALUATION AND ASSESSMENT OF COMORBIDITIES On the basis of a new consensus report on diabetes and language, new text was added to guide health care professionals’ use of language to communicate about diabetes with people with diabetes and professional audiences in an informative, empowering, and educational style. A new figure from the ADA-European Association for the Study of Diabetes (EASD) consensus report about the diabetes care decision cycle was added to emphasize the need for ongoing assessment and shared decision making to achieve the goals of health care and avoid clinical inertia. A new recommendation was added to explicitly call out the importance of the diabetes care team and to list the professionals that make up the team. A recommendation was added to include the 10-year atherosclerotic cardiovascular disease (ASCVD) risk as part of overall risk assessment. The fatty liver disease section was revised to include updated text and a new recommendation regarding when to test for liver disease. SECTION 5. LIFESTYLE MANAGEMENT Evidence continues to suggest that there is NOT an ideal percentage of calories from carbohydrate, protein, and fat for all people with diabetes. Therefore, more discussion was added about the importance of macronutrient distribution based on an individualized assessment of current eating patterns, preferences, and metabolic goals. Additional considerations were added to the eating patterns, macronutrient distribution, and meal planning sections to better identify candidates for meal plans, specifically for low-carbohydrate eating patterns and people who are pregnant or lactating, who have or are at risk for disordered eating, who have renal disease, and who are taking sodium–glucose cotransporter 2 inhibitors. There is NOT a one-size-fits-all eating pattern for individuals with diabetes, and meal planning should be individualized. A recommendation was modified to encourage people with diabetes to decrease consumption of both sugar sweetened and nonnutritive-sweetened beverages and use other alternatives, with an emphasis on water intake. The sodium consumption recommendation was modified to eliminate the further restriction that was potentially indicated for those with both diabetes and hypertension. Additional discussion was added to the physical activity section to include the benefit of a variety of leisure-time physical activities and flexibility and balance exercises. The discussion about e-cigarettes was expanded to include more on public perception and how their use to aide smoking cessation was not more effective than “usual care.” SECTION 6. GLYCEMIC TARGETS This section now begins with a discussion of A1C tests to highlight the centrality of A1C testing in glycemic management. To emphasize that the risks and benefits of glycemic targets can change as diabetes progresses and patients age, a recommendation was added to reevaluate glycemic targets over time. The section was modified to align with the living Standards updates made in April 2018 regarding the consensus definition of hypoglycemia. SECTION 7. DIABETES TECHNOLOGY This new section includes new recommendations, the self-monitoring of blood glucose section formerly included in Section 6 “Glycemic Targets,” and a discussion of insulin delivery devices, blood glucose meters, continuous glucose monitors (real-time and intermittently scanned, and automated insulin delivery devices. The recommendation to use self-monitoring of blood glucose in people who are not using insulin was changed to acknowledge that routine glucose monitoring is of limited additional clinical benefit in this population. SECTION 8. OBESITY MANAGEMENT FOR THE TREATMENT OF TYPE 2 DIABETES A recommendation was modified to acknowledge the benefits of tracking weight, activity, etc., in the context of achieving and maintaining a healthy weight. A brief section was added on medical devices for weight loss, which are not currently recommended due to limited data in people with diabetes. The recommendations for metabolic surgery were modified to align with recent guidelines, citing the importance of considering comorbidities beyond diabetes when contemplating the appropriateness of metabolic surgery for a given patient. SECTION 9. PHARMACOLOGIC APPROACHES TO GLYCEMIC TREATMENT The section on the pharmacologic treatment of type 2 diabetes was significantly changed to align, as per the living Standards update in October 2018, with the ADA-EASD consensus report on this topic. This includes consideration of key patient factors: (a) important comorbidities such as ASCVD, CKD, and HF, (b) hypoglycemia risk, (c) effects on body weight, (d) side effects, (e) costs, and (f) patient preferences. To align with the ADA-EASD consensus report, the approach to injectable medication therapy was revised. A recommendation that, for most patients who need the greater efficacy of an injectable medication, a GLP-1 agonist should be the first choice, ahead of insulin. A new section was added on insulin injection technique, emphasizing the importance of technique for appropriate insulin dosing and the avoidance of complications (lipodystrophy, etc.). The section on non-insulin pharmacologic treatments for DM1 was abbreviated, as these are not generally recommended. SECTION 10. CARDIOVASCULAR DISEASE AND RISK MANAGEMENT For the first time, this section is endorsed by the American College of Cardiology. Additional text was added to acknowledge heart failure as an important type of cardiovascular disease in people with diabetes for consideration when determining optimal diabetes care. The blood pressure recommendations were modified to emphasize the importance of individualization of targets based on cardiovascular risk. A discussion of the appropriate use of the ASCVD risk calculator was included, and recommendations were modified to include assessment of 10-year ASCVD risk as part of overall risk assessment and in determining optimal treatment approaches. The recommendation and text regarding the use of aspirin in primary prevention was updated with new data. For alignment with the ADA-EASD consensus report, two recommendations were added for the use of medications that have proven cardiovascular benefit in people with ASCVD, with and without heart failure. SECTION 11. MICROVASCULAR COMPLICATIONS AND FOOT CARE To align with the ADA-EASD consensus report, a recommendation was added for people with type 2 diabetes and chronic kidney disease to consider agents with proven benefit with regard to renal outcomes. The recommendation on the use of telemedicine in retinal screening was modified to acknowledge the utility of this approach, so long as appropriate referrals are made for a comprehensive eye examination. Gabapentin was added to the list of agents to be considered for the treatment of neuropathic pain in people with diabetes based on data on efficacy and the potential for cost savings. The gastroparesis section includes a discussion of a few additional treatment modalities. The recommendation for patients with diabetes to have their feet inspected at every visit was modified to only include those at high risk for ulceration. Annual examinations remain recommended for everyone. SECTION 12. OLDER ADULTS A new section and recommendation on lifestyle management was added to address the unique nutritional and physical activity needs and considerations for older adults. Within the pharmacologic therapy discussion, de-intensification of insulin regimes was introduced to help simplify insulin regimen to match individual’s self-management abilities. SECTION 13. CHILDREN AND ADOLESCENTS Introductory language was added to the beginning of this section reminding the reader that the epidemiology, pathophysiology, developmental considerations, and response to therapy in pediatric-onset diabetes are different from adult diabetes, and that there are also differences in recommended care for children and adolescents with type 1 as opposed to type 2 diabetes. A recommendation was added to emphasize the need for disordered eating screening in youth with type 1 diabetes beginning at 10–12 years of age. Based on new evidence, a recommendation was added discouraging e-cigarette use in youth. The discussion of type 2 diabetes in children and adolescents was significantly expanded, with new recommendations in a number of areas, including screening and diagnosis, lifestyle management, pharmacologic management, and transition of care to adult providers. New sections and/or recommendations for type 2 diabetes in children and adolescents were added for glycemic targets, metabolic surgery, nephropathy, neuropathy, retinopathy, nonalcoholic fatty liver disease, obstructive sleep apnea, polycystic ovary syndrome, cardiovascular disease, dyslipidemia, cardiac function testing, and psychosocial factors. SECTION 14. MANAGEMENT OF DIABETES IN PREGNANCY Women with preexisting diabetes are now recommended to have their care managed in a multidisciplinary clinic to improve diabetes and pregnancy outcomes. Greater emphasis has been placed on the use of insulin as the preferred medication for treating hyperglycemia in gestational diabetes mellitus as it does not cross the placenta to a measurable extent and how metformin and glyburide should not be used as first-line agents as both cross the placenta to the fetus. SECTION 15. DIABETES CARE IN THE HOSPITAL Because of their ability to improve hospital readmission rates and cost of care, a new recommendation was added calling for providers to consider consulting with a specialized diabetes or glucose management team where possible when caring for hospitalized patients with diabetes. SECTION 16. DIABETES ADVOCACY The “Insulin Access and Affordability Working Group: Conclusions and Recommendations” ADA statement was added to this section. Published in 2018, this statement compiled public information and convened a series of meetings with stakeholders throughout the insulin supply chain to learn how each entity affects the cost of insulin for the consumer, an important topic for the ADA and people living with diabetes.
Dr. Peerzada Ovais Ahmad6 Likes7 Answers
4 Likes