Nail Abnormalities
Friends today I am discussing about Nail Abnormalities. What are nail abnormalities? Healthy nails appear smooth and have consistent coloring. As you age, you may develop vertical ridges, or your nails may be a bit more brittle. This is harmless. Spots due to injury should grow out with the nail. Abnormalities — such as spots, discoloration, and nail separation — can result from injuries to the fingers and hands, viral warts (periungual warts), infections (onychomycosis), and some medications, such as those used for chemotherapy. Certain medical conditions can also change the appearance of your fingernails. However, these changes can be difficult to interpret. Your fingernails’ appearance alone isn’t enough to diagnose a specific illness. A doctor will use this information, along with your other symptoms and a physical exam, to make a diagnosis. Abnormalities of the fingernail Some changes in your nails are due to medical conditions that need attention. See your doctor if you have any of these symptoms: discoloration (dark streaks, white streaks, or changes in nail color) changes in nail shape (curling or clubbing) changes in nail thickness (thickening or thinning) nails that become brittle nails that are pitted bleeding around nails swelling or redness around nails pain around nails a nail separating from the skin These nail changes can be caused by a variety of different conditions, including ones we describe below. Beau’s lines Depressions that run across your fingernail are called Beau’s lines. These can be a sign of malnourishment. Other conditions that cause Beau’s lines are: diseases that cause a high fever such as measles, mumps, and scarlet fever peripheral vascular disease pneumonia uncontrolled diabetes zinc deficiency Clubbing Clubbing is when your nails thicken and curve around your fingertips, a process that generally takes years. This can be the result of low oxygen in the blood and is associated with: cardiovascular diseases inflammatory bowel disease liver diseases pulmonary diseases AIDS Koilonychia (spooning) Koilonychia is when your fingernails have raised ridges and scoop outward, like spoons. It’s also called “spooning.” Sometimes the nail is curved enough to hold a drop of liquid. Spooning can be a sign that you have: iron deficiency anemia heart disease hemochromatosis, a liver disorder that causes too much iron to be absorbed from food lupus erythematosus, an autoimmune disorder that causes inflammation hypothyroidism Raynaud’s disease, a condition that limits your blood circulation Leukonychia (white spots) Nonuniform white spots or lines on the nail are called leukonychia. They’re usually the result of a minor trauma and are harmless in healthy individuals. Sometimes leukonychia is associated with poor health or nutritional deficiencies. Factors can include infectious, metabolic, or systemic diseases as well as certain drugs. Mees’ lines Mees’ lines are transverse white lines. This can be a sign of arsenic poisoning. If you have this symptom, your doctor will take hair or tissue samples to check for arsenic in your body. Onycholysis When the nail plate separates from the nail bed, it causes a white discoloration. This is called onycholysis. This can be due to infection, trauma, or products used on the nails. Other causes for onycholysis include: psoriasis thyroid disease Pitting Pitting refers to small depressions, or little pits, in the nail. It’s common in people who have psoriasis, a skin condition that causes the skin to be dry, red, and irritated. Some systemic diseases can also cause pitting. Terry’s nails When the tip of each nail has a dark band, it’s called Terry’s nails. This is often due to aging, but it can also be caused by: congestive heart failure diabetes liver disease Yellow nail syndrome Yellow nail syndrome is when the nails get thicker and don’t grow as fast as normal. Sometimes the nail lacks a cuticle and may even pull away from the nail bed. This can be the result of: internal malignancies lymphedema, swelling of the hands pleural effusions, fluid buildup between the lungs and chest cavity respiratory illnesses such as chronic bronchitis or sinusitis rheumatoid arthritis These are just some of the signs of abnormal fingernails. Having any of these signs isn’t proof of any medical condition. You’ll need to visit your doctor to determine if your condition is serious. In many cases, proper care of your nails is enough to correct their appearance. How to care for your nails You can prevent many nail abnormalities by taking good care of your nails. Follow these general guidelines to keep your nails healthy: Tips Don’t bite or tear at your nails, or pull on hangnails. Always use nails clippers and trim them after you bathe, when nails are still soft. Keep your nails dry and clean. Using sharp manicure scissors, trim your nails straight across, rounding the tips gently. If you have a problem with brittle or weak nails, keep them short to avoid breakage. Use lotion on your nails and cuticles to keep the nail and nail beds moisturized. Homoeopathic medicines for nail abnormalities Medicines according to Cause1 Cause Medicines From a hurt Ledum pal. Prick with a needle under the nail Allium cepa, Bovista, Sulphur; Hard work Rhus tox, Sepia; Prick near the nail Iodum; Splinters Baryta carb., Hepar sulph., Iodum, Lachesis, Nitricum acidum, Petroleum, Silicea, Sulphur; Splits of the skin adhering to the nails Allium cepa, Natrum mur. TABLE 2 Medicines according to the Sensation Sensations Medicines Irritable feeling under finger nails, relieved by biting them Ammonium brom. Itching-about roof of Upas tiente Pains-Burning under Sarsarparilla Pains, gnawing, beneath finger nails Alumina; Sarsaparilla.; Sepia Pains, neuralgic, beneath finger nails Berberis vulgaris Pains, neuralgic Alumina; Allium cepa; Colchicum Pains, smarting at roots Sulphur Pains, splinter-like, beneath toe nails Fluoric acidum Pains, ulcerative, beneath toe nails Antimonium crudum; Graphites; Teucrium Medicines according to Location1 Fig. Medicines according to location pastedGraphic.png TABLE 3 Medicines according to Pathology Pathology Medicines Atrophy Silicea Blueness Digitalis; Oxalicum Acidum Deformed-brittle, thickened (onchogryposis) Alumina; Anatherium; Antimonium crudum; Arsenicum album; Causticum; Dioscorea; Fluoricum acidum; Graphites; Merc. Sol.; Natrum muriaticum; Sabadilla; Secal cor..; Senecio aureus; Sepia; Silicea; Thuja.; X-ray. Falling off Brassica napus; Butyric acid; Helleborus faetidus; Helleborus Hangnails Lycopodium; Natrum muriaticum; Sulphur; Upas tiente Hypertrophy (onychauxis) Graphites Inflammation of pulp (onychia) Arnica; Calendula; Fluoricum acidum.; Graphites; Phosphorus; Psorinum; Sarsaparilla; Silicea; Upas tiente Inflammation, under toe nails Sabadilla Ingrowing toe nails Causticum; Magnetis polus austral.; Nitricum acidum; Silicea; Staphysagria; Teucrium; Tetrodymite Softening Plumbum met; Thuja Spots, white on Alumina; Nitricum acidum Trophic changes Radium brom Ulceration Alumina; Garphites; Merc. Sol.; Phosphorus; Sanguinaria; Sarsaparilla; Silicea; Teucrium; Tetrodymite Yellow color Conium maculatum
Impressive any chronic case try homeopathy safe drug is diluted in alcohol real substance absent pure magic works haeneman Dr founder was MD
Informative and educative post SIR.
अच्छा है धन्यवाद आपको
Informative post sir
Bacillinum
Useful
Thanks Doctor for your valuable information
Merc Sol200 one dose every 8th day & Antim Crud 30 twice daily for one month.After inform me.
Nice sir
Cases that would interest you
- Login to View the image
May be useful for General practitioners and Medical Students. Common Nail Findings associated with diseases. 1. BEAU'S Lines- These are transverse grooves or depressions parallel to the lunula. Caused by the conditions that cause the nail to grow slowly or even cease to grow for short intervals. The point of arrested growth is seen as a transverse groove. Often associated with - infections (Typhus, Acute Rheumatic Fever, AIDS) -Protein deficiency -Pellagra -Raynauds disease -Diabetes -Hypothyroidism -Hypocalcemia -Chronic Pancreatitis 2. MEES' Bands- White transverse line or band parallel to lunula resulting from poisoning or systemic illness.seen in -Chronic arsenic poisoning -Hodgkins disease -CHF -Leprosy 3. LINDSAY'S Nails- also called half & half nails. Proximal portion of Nail bed is whitish whereas distal part is red or pink. commonly associated with -Chronic Renal Failure -Azotemia 4. TERRY'S Nails - are white nail beds to within 1 to 2 mm of distal border of nail associated with -Hepatic Failure -Cirrhosis -Hypoalbuminemia -Chronic CHF -Hyoerthyroidism 5. SPLINTER HAEMORRHAGE. These are formed by extravasation of blood from longitudinal nail bed blood vessels to adjacent troughs. These are most often related to local, light trauma. Classically associated with -Subacute Bacterial Endocarditis. May be seen in -Leukemia -Vasculitis -Rheumatoid Arthritis -SLE 6. KOILONYCHIA - Spoon Nail is a dystrophic state in which the nail plate thins and a cup like depression. develops. Commonly associated with - Iron deficiency Anemia. 7. CLUBBING - Angle between the normal nail bed and finger is approx 160 degrees and nail bed is firm. This angle is referred to as LOVIBOND'S angle. When clubbing develops, this angle straightens out to be greater than 180 degrees & nail bed becomes spongy and has a bullous shape with exaggerated horizontal and longitudinal curvature. Most commonly associated with -Congenital Cyanotic Heart Disease -Cystic Fibrosis -Mesothelioma of Pleura -Pulmonary Neoplasms -Bronchogenic Carcinoma. 8. PITTING of Nails is seen in Psoriasis. SOURCE. TEXTBOOK OF PHYSICAL DIAGNOSIS. MARK. H. SWARTZ.
Dr. Majid Mustafa Sheikh30 Likes26 Answers - Login to View the image
ABC OF : NAIL DISORDERS. ( I ). MAY BE USEFUL. *** ANONYCHIA is the absence of nails, an anomaly, which may be the result of a congenital ectodermal defect, ichthyosis, severe infection, severe allergic contact dermatitis, self-inflicted trauma, Raynaud phenomenon, lichen planus, epidermolysis bullosa, or severe exfoliative diseases....... *** PSORIASIS can also affect the fingernails and toenails, leading to thick fingernails with pitting, ridges in the nails, nail lifting away from the nail bed, and irregular contour of the nail....... *** LICHEN PLANUS of the nails can cause brittle or split nails, and the affected nails may have ridges running lengthwise....... *** FUNGAL nail infections are common infections of the fingernails or toenails that can cause the nail to become discolored, thick, and more likely to crack and break. Infections are more common in toenails than fingernails.....by some dermatophytes, Candida (Monilia) species, etc....... The technical name for a fungal nail infection is “ONYCHOMYCOSIS.”....... *** SPOON-SHAPED or spooning fingernails refers to a concavity in the fingernail itself, resulting in a depression in the nail that gives an appearance of a spoon shape to the entire nail. This growth disturbance in the nail is known as KOILONYCHIA....... In particular, koilonychias is associated with IRON DEFICIENCY. *** Fingernails are made by living skin cells....... So a skin condition such as eczema may lead to fingernail ridges. Skin dryness can also cause these ridges. If the body is low in protein, calcium, zinc.......or vitamin A, a deficiency can sometimes be revealed by ridges in the fingernails. ** HORIZONTAL RIDGES run from side to side on nails and are often referred to as BEAU'S LINES may be a sign of previous injury, underlying health conditions, or in rare cases, arsenic poisoning....... Horizontal ridges can be caused by trauma to the nail and may be deep or discolored. The can also indicate malnutrition, psoriasis or a thyroid problem....... ** VERTICAL RIDGES are usually harmless and a consequence of ageing.......nail injury, or trauma, or underlying medical conditions....... *** The ECTODERMAL DYSPLASIAS (EDs) are genetic disorders affecting the development or function of the teeth, hair, nails and sweat glands....... ** ED is not a single disorder, but a group of closely related conditions of which more than 150 different syndromes have been identified....... *** Nail CLUBBING, also known as digital clubbing, is a deformity of the finger or toe nails associated with a number of diseases, mostly of the heart and lungs. ... Hippocrates was probably the first to document clubbing as a sign of disease, and the phenomenon is therefore occasionally called "Hippocratic fingers"..... ** Lung cancer is the most common cause of clubbing. Clubbing often occurs in heart and lung diseases that reduce the amount of oxygen in the blood. ... Heart defects that are present at birth (congenital) Chronic lung infections that occur in people with bronchiectasis, cystic fibrosis, or lung abscess....... *** While the NAIL BITING and picking seems to be such a common problem, the psychological and medical research does not agree on the exact motivation for the action. However, it suggests that nail biting can be the result of STRESS, VARIOUS MEDICAL DISORDERS, LEARNED BEHAVIORS, OR JUST PLAIN HABIT....... *** SPLINTER HEMORRHAGES : They run in the direction of nail growth. They are named splinter hemorrhages because they look like a splinter under the fingernail. The hemorrhages may be caused by tiny clots that damage the small capillaries under the nails. Splinter hemorrhages can occur with infection of the heart valves (endocarditis)....... *** YELLOW TOENAILS in an infection by a fungus that attacks the nails..... or, in some cases, they may be a sign of skin cancer. The fungal infection is caused most often by dermatophytes, which eat keratin to grow....... One of the MOST COMMON CAUSES of YELLOW NAILS is a FUNGAL INFECTION. As the infection worsens, the nail bed may retract, and nails may thicken and crumble. In rare cases, yellow nails can indicate a more serious condition such as SEVERE THYROID DISEASE, LUNG DISEASE, DIABETES or PSORIASIS....... *** WHILE NAILS ( LEUKONYCHIA ) : CAUSES : Iron deficiency anemia. Cirrhosis of liver. Kidney disease. Heart failure. Diabetes. Problems with the digestion of proteins. An excessive loss of proteins in the intestines. zinc deficiency........etc....... *** RED NAILS :- CAUSES : LUPUS patients get quirky, angular blood vessels in their nail folds. PSORIASIS starts in the nails up to 10 percent of the time and CAUSES SPLITTING and PITTING of the nail bed. HEART DISEASE can turn the nail beds red....... ** If the NAIL BED is RED, it could be caused by a high content of fatty acids and cholesterol, due to an excess of dairy products, sugar and salt in the diet. This can lead to an underactive liver and blocked arteries....... To keep the system healthy by replacing refined foods with wholegrain rice and bread, and flush out the system with plenty of fresh vegetables and at least five glasses of water a day....... *** HALF PINK and HALF WHITE nails can be a sign of kidney disease....... *** BRITTLE NAILS :- CAUSES : AGING. CHEMICAL/TOXIN EXPOSURE. LONG-TERM USE OF NAIL POLISH AND POLISH REMOVE. LOW HUMIDITY ENVIRONMENT. MALNUTRITION. NAIL-PATELLA SYNDROME. PROLONGED EXPOSURE TO WATER. TRAUMA. ** B complex vitamins (especially biotin), calcium, and zinc have all been implicated. There are other medical conditions which can cause brittle nails such as ANEMIA (low blood count), THYROID DISORDERS, and skin disorders such as LICHEN PLANUS and PSORIASIS. ** ONYCHOSCHIZIA includes splitting, brittle, soft or thin nails. Onychoschizia is MORE COMMON IN WOMEN. Only VERY RARELY are INTERNAL DISEASE or VITAMIN DEFICIENCIES the reason (IRON DEFICIENCY is the MOST COMMON).......
Dr. Puranjoy Saha39 Likes37 Answers - Login to View the image
*Restless leg syndrome (RLS* ☝ *Today about*☝ Definition Restless leg syndrome (RLS) or Willis-Ekbom disease(WED) is a common cause of painful legs. The leg pain of restless leg syndrome typically eases with motion of the legs and becomes more noticeable at rest. Restless leg syndrome also features worsening of symptoms and leg pain during the early evening or later at night. Restless leg syndrome Restless leg syndrome is often abbreviated RLS; it has also been termed shaking leg syndrome. Night time involuntary jerking of the legs during sleep is also known as periodic leg/limb movement disorder. History The first known medical description of RLS was by Sir Thomas Willis in 1672. Willis emphasized the sleep disruption and limb movements experienced by people with RLS. Initially published in Latin (De Anima Brutorum, 1672) but later translated to English (The London Practice of Physick, 1685), The term “fidgets in the legs” has also been used as early as the early nineteenth century. Subsequently, other descriptions of RLS were published, including those by Francois Boissier de Sauvages (1763), Magnus Huss (1849), Theodur Wittmaack (1861), George Miller Beard (1880), Georges Gilles de la Tourette (1898), Hermann Oppenheim (1923) and Frederick Gerard Allison (1943). However, it was not until almost three centuries after Willis, in 1945, that Karl-Axel Ekbom (1907–1977) provided a detailed and comprehensive report of this condition in his doctoral thesis, Restless legs: clinical study of hitherto overlooked disease. Ekbom coined the term “restless legs” and continued work on this disorder throughout his career. He described the essential diagnostic symptoms, differential diagnosis from other conditions, prevalence, relation to anemia, and common occurrence during pregnancy. Epidemiology Except perhaps in Asian populations, RLS is a common disorder, occurring in about 10% of the population. The age-adjusted prevalence of RLS determined by telephone interviews in a random population of 1803 adults in Kentucky was 10%. A Canadian survey of 2019 adults estimated the prevalence of RLS symptoms at 17% for women and 13% for men. A population-based survey in West Pomerania, Germany, of 4107 subjects found an overall 10.6% prevalence. Using standardized questions in face-to-face interviews, Rothdach et al. reported an overall prevalence of 9.8% in 369 participants ages 65-83 years in Augsburg, Germany. In a study from Japan, 4612 participants living in urban residential areas were assessed for a single symptom of RLS by a self-administered questionnaire of the following two items: (1) Have you ever been told you jerk your legs or kick sometimes and (2) have you ever experienced sleep disturbance due to a creeping sensation or hot feeling in your legs? The prevalence of RLS ranged from 3% in women ages 20-29 years to 7% in women ages 50-59 years and correlated with age. In contrast to the first three studies, RLS had a higher prevalence in men than women, with the difference reaching significance in those 40-49 years old; in men there was no positive correlation with age. Face-to-face interviews of 157 consecutive individuals ages 55 years and older participating in a health screening program and 1000 consecutive individuals ages 21 years and older from a primary health care center in Singapore yielded much lower prevalence data. Using IRLSSG criteria, the prevalence of RLS in this predominantly Asian population was 0.6% in the older (1 male) and 0.1% (1 female) in the younger cohorts. In the Kentucky and Singapore studies, there was no gender difference; however, in the two German studies, the prevalence was higher in women and in the Japanese study it was higher in men. The Canadian study reported a significantly higher occurrence of bedtime leg restlessness in women. Types Restless legs syndrome (RLS) can be either primary or secondary, and the causes vary. Primary RLS is a neurological disorder. Although the majority of people with RLS begin to experience symptoms in their middle years, some may have signs of the problem in childhood. Their symptoms may slowly progress for years before becoming a regular occurrence. Secondary RLS tends to be more severe than the primary type and stems from another underlying condition, including the following: Anemia or low blood-iron levels Folate deficiency Nerve damage due to diabetes or other conditions Kidney disease or dialysis Attention deficit disorder (ADD) Attention deficit/hyperactivity disorder (ADHD) Pregnancy Rheumatoid arthritis Parkinson’s disease Risk factors RLS/WED can develop at any age, even during childhood. The disorder is more common with increasing age and more common in women than in men. Restless legs syndrome usually isn’t related to a serious underlying medical problem. However, RLS/WED sometimes accompanies other conditions, such as: Peripheral neuropathy: This damage to the nerves in your hands and feet is sometimes due to chronic diseases such as diabetes and alcoholism. Iron deficiency: Even without anemia, iron deficiency can cause or worsen RLS/WED. If you have a history of bleeding from your stomach or bowels, experience heavy menstrual periods or repeatedly donate blood, you may have iron deficiency. Kidney failure: If you have kidney failure, you may also have iron deficiency, often with anemia. When kidneys don’t function properly, iron stores in your blood can decrease. This, with other changes in body chemistry, may cause or worsen RLS/WED. Causes The cause of restless leg syndrome is unknown in most people. However, restless leg syndrome has been associated with Pregnancy, Obesity, Smoking, Iron deficiency and anemia, Nerve disease, Polyneuropathy (which can be associated with hypothyroidism, heavy metal toxicity, toxins, and many other conditions), Other hormone diseases such as diabetes, and Kidney failure (which can be associated with vitamin and mineral deficiency). Some drugs and medications have been associated with restless leg syndrome including: Caffeine, Alcohol, H2-histamine blockers (such as ranitidine [Zantac] and cimetidine [Tagamet]), and certain antidepressants (such as amitriptyline [Elavil, Endep]). Occasionally, restless leg syndrome run in families. Recent studies have shown that restless leg syndrome appears to become more common as a person ages. Also, poor venous circulation of the legs (such as with varicose veins) can cause restless leg syndrome. Symptoms The International Restless Legs Syndrome Study Group described the following symptoms of restless legs syndrome (RLS): Strange itching, tingling, or “crawling” sensations occurring deep within the legs; these sensations may also occur in the arms. A compelling urge to move the limbs to relieve these sensations Restlessness — floor pacing, tossing and turning in bed, rubbing the legs Symptoms may occur only with lying down or sitting. Sometimes, persistent symptoms worsen while lying down or sitting and improve with activity. In very severe cases, the symptoms may not improve with activity. Other symptoms of RLS include the following: Sleep disturbances and daytime sleepiness Involuntary, repetitive, periodic, jerking limb movements that occur either in sleep or while awake and at rest; these movements are called periodic leg movements of sleep or periodic limb movement disorder. Up to 90% of people with RLS also have this condition. In some people with RLS, the symptoms do not occur every night but come and go. These people may go weeks or months without symptoms (remission) before the symptoms return again. Complications Restless legs syndrome rarely results in any serious consequences. However, in some cases severe and persistent symptoms can cause considerable mental distress, chronic insomnia, and daytime sleepiness. In addition, since restless legs syndrome (RLS) is worse when resting, people with severe RLS may avoid daily activities that involve long periods of sitting, such as going to movies or traveling long distances. Diagnosis and test There’s no single test for diagnosing restless legs syndrome. A diagnosis will be based on your symptoms, your medical and family history, a physical examination, and your test results. Your GP should be able to diagnose restless legs syndrome, but they may refer you to a neurologist if there’s any uncertainty. There are four main criteria your GP or specialist will look for to confirm a diagnosis. These are: an overwhelming urge to move your legs, usually with an uncomfortable sensation such as itching or tingling your symptoms occur or get worse when you’re resting or inactive your symptoms are relieved by moving your legs or rubbing them your symptoms are worse during the evening or at night Blood tests Your GP may refer you for blood tests to confirm or rule out possible underlying causes of restless legs syndrome. For example, you may have blood tests to rule out conditions such as anaemia, diabetes and kidney function problems. It’s particularly important to find out the levels of iron in your blood because low iron levels can sometimes cause secondary restless legs syndrome. Low iron levels can be treated with iron tablets. Sleep tests If you have restless legs syndrome and your sleep is being severely disrupted, sleep tests such as a suggested immobilisation test may be recommended. The test involves lying on a bed for a set period of time without moving your legs while any involuntary leg movements are monitored. Occasionally, polysomnography may be recommended. This is a test that measures your breathing rate, brain waves and heartbeat throughout the course of a night. The results will confirm whether you have periodic limb movements in sleep (PLMS). Treatment and medications Treatment for RLS is targeted at easing symptoms. In people with mild to moderate restless legs syndrome, lifestyle changes, such as beginning a regular exercise program, establishing regular sleep patterns, and eliminating or decreasing the use of caffeine, alcohol, and tobacco, may be helpful. Treatment of an RLS-associated condition also may provide relief of symptoms. Other non-drug RLS treatments may include: Leg massages Hot baths or heating pads or ice packs applied to the legs Good sleep habits A vibrating pad called Relaxis Medications may be helpful as RLS treatments, but the same drugs are not helpful for everyone. In fact, a drug that relieves symptoms in one person may worsen them in another. In other cases, a drug that works for a while may lose its effectiveness over time. Drugs used to treat RLS include: Dopaminergic drugs, which act on the neurotransmitter dopamine in the brain. Mirapex, Neupro, and Requip are FDA-approved for treatment of moderate to severe RLS. Others, such as levodopa, may also be prescribed. Benzodiazepines, a class of sedative medications, may be used to help with sleep, but they can cause daytime drowsiness. Narcotic pain relievers may be used for severe pain. Anticonvulsants, or antiseizure drugs, such as Tegretol, Lyrica, Neurontin, and Horizant. Although there is no cure for restless legs syndrome, current treatments can help control the condition, decrease symptoms, and improve sleep. Lifestyle and home remedies Making simple lifestyle changes can help alleviate symptoms of RLS/WED. Try baths and massages: Soaking in a warm bath and massaging your legs can relax your muscles. Apply warm or cool packs: Use of heat or cold, or alternating use of the two, may lessen your limb sensations. Try relaxation techniques: such as meditation or yoga. Stress can aggravate RLS/WED. Learn to relax, especially before bedtime. Establish good sleep hygiene: Fatigue tends to worsen symptoms of RLS/WED, so it’s important that you practice good sleep hygiene. Ideally, have a cool, quiet, comfortable sleeping environment; go to bed and rise at the same time daily; and get adequate sleep. Some people with RLS/WED find that going to bed later and rising later in the day helps in getting enough sleep. Exercise: Getting moderate, regular exercise may relieve symptoms of RLS/WED, but overdoing it or working out too late in the day may intensify symptoms. Avoid caffeine: Sometimes cutting back on caffeine may help restless legs. Try to avoid caffeine-containing products, including chocolate and caffeinated beverages, such as coffee, tea and soft drinks, for a few weeks to see if this helps.
Dr. Shailendra Kawtikwar10 Likes17 Answers - Login to View the image
✍️✍️Late Effects Of Blood And Marrow Transplantation ___________________________________________ Abstract Hematopoietic cell transplantation is a curative treatment for a variety of hematologic diseases. Advances in transplantation technology have reduced early transplant-relatedmortality and expanded application of transplantation to older patients and to a wider variety of diseases. Management of late effects after transplantation is increasingly important for a growing number of long-term survivors that is estimated to be half a million worldwide. Many studies have shown that transplant survivors suffer from significant late effects that adversely affect morbidity, mortality, working status and quality of life. Late effects include diseases of the cardiovascular, pulmonary, and endocrine systems, dysfunction of the thyroid gland, gonads, liver and kidneys, infertility, iron overload, bone diseases, infection, solid cancer, and neuropsychological effects. The leading causes of late mortality include recurrent malignancy, lung diseases, infection, secondary cancers and chronic graft-versus-host disease. The aim of this review is to facilitate better care of adult transplant survivors by summarizing accumulated evidence, new insights, and practical information about individual late effects. Further research is needed to understand the biology of late effects allowing better prevention and treatment strategies to be developed. Introduction Hematopoietic cell transplantation (HCT) is a curative treatment for a variety of hematologic diseases.1 The safety of HCT has improved over the decades,2 indications for HCT have expanded to older patients,3 and almost all patients are able to find suitable allogeneic donors by the growing use of cord blood4 and haploidentical transplantation.5 These current conditions have contributed to a growing number of HCT survivors, estimated to be half a million worldwide.6 Patients who are disease-free at two or five years after HCT have a greater than 80% subsequent 10-year survival rate,7–10 but many studies show that HCT survivors suffer from significant late effects that adversely affect morbidity, mortality, working status and quality of life.7–13 A prospective observational study of 1022 survivors who underwent HCT between 1974 and 1998 showed that 66% of the survivors had at least one chronic condition and 18% had severe or life-threatening conditions.14 A retrospective study of 1087 contemporary survivors also showed that the cumulative incidence of any non-malignant late effect at five years after HCT was 45% among autologous and 79% among allogeneic recipients, and 2.5% of autologous and 26% of allogeneic recipients had three or more late effects.15 Life expectancy among 5-year survivors remained 30% lower compared with the general population, regardless of their current ages and years since HCT.9 The leading causes of excess deaths in 5-year survivors included secondary malignancies (27%) and recurrent disease (14%), followed by infections (12%), chronic graft-versus-host disease (GvHD) (11%), cardiovascular diseases (11%), and respiratory diseases (7%).9 The aim of this review is to facilitate better care of adult HCT survivors by summarizing accumulated evidence, new insights, and practical information about individual late effects (Figure 1). Recurrent disease and chronic GvHD are not discussed and readers are referred to other reviews.16–20 Figure 1. Download figure Open in new tab Download powerpoint Figure 1. Late effects of blood and marrow transplantation. Cardiovascular diseases Cardiovascular diseases (CVD) after HCT include cardiomyopathy, congestive heart failure, valvular dysfunction, arrhythmia, pericarditis, and coronary artery disease.21 Their cumulative incidences were 5%–10% at ten years after HCT,22–24 accounting for 2%–11% of mortality among long-term survivors.8,9,25 The incidence of CVD and its associated mortality were 1.4–3.5-fold higher compared with the general population.8,9,24,25 HCT survivors are more likely to have conventional risk factors such as dyslipidemia and diabetes than the general population.26 Early diagnosis and treatment of modifiable risk factors is important. We usually treat hypertension more than 140/90 mmHg on 2 separate visits or more than 130/80 mmHg for patients with diabetes or renal disease.27 The first step is lifestyle modification including weight reduction, dietary sodium reduction and regular physical activity, followed by initiating antihypertensive drugs such as angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs). Anthracycline exposure and chest radiation are the major risk factors for CVD after HCT.21 Several studies showed that dexrazoxane, ACE inhibitors, ARBs and beta-blockers can prevent anthracycline-related cardiomyopathy in the non-HCT setting.28–32 Once cardiomyopathy is established, it is important to initiate appropriate treatment. ACE inhibitors and beta-blockers have been effective in improving left ventricular function.33 Pulmonary diseases Non-infectious late complications of the lung include bronchiolitis obliterans syndrome (BOS), cryptogenic organizing pneumonia (COP) and pulmonary hypertension. BOS represents chronic GvHD of the lung, and is characterized by the new onset of fixed airflow obstruction after allogeneic HCT.34 According to the strict 2005 National Institutes of Health (NIH) diagnostic criteria for chronic GvHD, incidence of BOS was 5.5% and its prevalence was 15% among patients with chronic GvHD.35 Symptoms of BOS include dyspnea on exertion, cough and wheezing, but early BOS may be asymptomatic until significant lung function is lost.36 One study showed rapid decline in %FEV1 during the six months before BOS diagnosis, with a lower %FEV1 at diagnosis associated with worse survival.37 In our practice, we perform pulmonary function tests every three months including %FEV1 and FEV1/FVC among patients with active chronic GvHD. When testing shows significant new airflow obstruction, we repeat testing every month until stability is confirmed.38 Plasma matrix metalloproteinase 3 levels39 and parametric response mapping from CT scans40 might be useful diagnostic tests for BOS but these have not yet entered clinical practice. Standard treatment of BOS is prednisone at 1 mg/kg per day, followed by a taper to reach a lower, alternate-day regimen.38 A multicenter prospective study showed that addition of FAM (inhaled fluticasone propionate at 440 μg twice a day, azithromycin at 250 mg taken 3 days per week, and montelukast at 10 mg nightly) to prednisone treatment stabilized pulmonary function in 70% of patients with newly diagnosed BOS and permitted systemic steroid exposure to be reduced.41 Cryptogenic organizing pneumonia is a disorder involving bronchioles, alveolar ducts, and alveoli, the lumen of which become filled with buds of granulation tissue consisting of fibroblasts.42 Clinical symptoms include dry cough, shortness of breath, and fever. Bronchoalveolar lavage is performed to exclude infection. Lung biopsy is required for definitive diagnosis, but an empiric diagnosis is often based on radiographic findings of diffuse, peripheral, fluffy infiltrates consistent with airspace consolidation. Pulmonary function testing shows restrictive changes and low diffusing capacity of the lungs for carbon monoxide. The incidence of COP is 2%–10%,43,44 and it is strongly associated with acute and chronic GvHD.45 COP usually responds within 5–7 days to prednisone at 1 mg/kg per day, which is continued for one month followed by a slow taper over five months because COP can often recur. Small case series suggest potential benefits of macrolides for treatment of COP.46 Pulmonary hypertension is an uncommon but potentially fatal complication after HCT, with a reported prevalence of 2.4%.47 The most common symptoms are hypoxia, tachypnea, dyspnea, and acute respiratory failure,48 and if untreated, pulmonary hypertension can result in a progressive increase in pulmonary vascular resistance, right ventricular failure and death. Since initial symptoms are non-specific, it is likely to be underdiagnosed after HCT. Although cardiac catheterization is the gold standard for diagnosis of pulmonary hypertension, high-resolution chest computed tomography and echocardiography are non-invasive and useful diagnostic modalities. The most common types are pulmonary arterial hypertension and pulmonary veno-occlusive disease, sometimes associated with transplant-associated microangiopathy and inherited or acquired hemolytic anemia.48 First-line therapies are supplemental oxygen and phosphodiesterase-5 inhibitors, followed by inhaled nitric oxide, diuretics, bipyridine inotropes and after-load reducing agents.48 Endocrine diseases Major late effects in the endocrine system include thyroid dysfunction, diabetes, dyslipidemia, and adrenal insufficiency. Hypothyroidism occurs in 30% of patients by 25 years after HCT.49 Risk factors include age under ten years, conditioning containing radiation, busulfan or cyclophosphamide, and hematologic malignancies.49,50 The international guidelines recommend checking serum thyroid-stimulating hormone and free thyroxine levels every year.21 For patients who received radiolabeled iodine antibody therapy, thyroid function should be checked earlier starting at three and six months after HCT, and other times as clinically indicated. Standard criteria are used to initiate replacement therapy for hypothyroidism. Some patients develop hyperthyroidism after HCT as a rare complication.51 Diabetes occurs in 8%–41% of patients after allogeneic HCT and in 3% of patients after autologous HCT.15,52,53 Its incidence after allogeneic HCT is 3.65 times higher compared with their siblings.54 Initial treatment is therapeutic lifestyle counseling, but many patients require hypoglycemic agents or insulin. Dyslipidemia occurs in 9%–61% of HCT survivors.53,55 Despite no established consensus for management of dyslipidemia after HCT, our practice is to initiate therapeutic lifestyle counseling followed by statin therapy when LDL cholesterol exceeds 130–190 mg/dL according to the estimated risk of CVD, based on the National Cholesterol Education Program Adult Treatment Panel III guidelines56 and the recently suggested approach after allogeneic HCT.57 The 2013 ACC/AHA guidelines do not specify the targeted levels for LDL cholesterol, and addition of statin therapy is based on calculated risk for future cardiovascular events.58 Addition of omega-3-acid ethyl esters or fibrate is considered when fasting triglycerides exceed 200–499 mg/dL. Adrenal insufficiency occurs in 13% of patients after allogeneic HCT and 1% of patients after autologous HCT,15 and can be confirmed by a cortisol-stimulation test. Once adrenal insufficiency is diagnosed, physiological glucocorticoid replacement and a very slow terminal taper is needed. Patients should carry notification that they have adrenal insufficiency to alert emergency medical providers. For chronic GvHD therapy, the risk of adrenal insufficiency is lower with alternate-day administration of corticosteroids than with daily dosing,59 although patients with brittle diabetes need daily dosing to allow for optimal glucose control. Male gonadal dysfunction and infertility Hypogonadism is common after HCT. Impaired spermatogenesis, erectile dysfunction, low testosterone, and low libido occur in male patients. Erectile dysfunction and low libido have been associated with both physical and psychosocial factors.60,61 Testosterone replacement may be considered for patients with low testosterone levels and has improved sexual function, libido and bone mass, although monitoring prostate-specific antigen and testosterone levels is necessary.62,63 Azoospermia occurred in 70% of male patients, and spermatogenesis recovered in 90% of patients conditioned with cyclophosphamide alone, in 50% of patients conditioned with cyclophosphamide plus busulfan or thiotepa, and in 17% of patients conditioned with total body irradiation (TBI).64 Semen banking or cryopreservation of testicular tissue should be discussed before HCT with patients desiring fertility. Female gonadal dysfunction, infertility and pregnancy Ovarian insufficiency, vaginal changes and low libido occur in female patients. A historical study showed that ovarian failure occurred in more than 90% of female patients after HCT and recovered in 92% of patients conditioned with cyclophosphamide alone, but only in 24% of patients conditioned with cyclophosphamide and TBI.65 A pilot study showed that only 10% of patients had ovarian failure after reduced-intensity allogeneic HCT.66 The use of hormone replacement therapy for premature ovarian failure should be individualized based on the patient age, severity of menopausal symptoms, low bone density, risk of breast cancer, clotting predisposition and liver abnormalities.67 Since efficacy of gonadotropin-releasing hormone agonists in preserving fertility in cancer patients is controversial,68,69 cryopreservation of oocytes, ovarian tissue, or embryos should be discussed with patients desiring fertility.70 The largest study of pregnancy after HCT showed that 0.87% of patients or their partners had pregnancies after allogeneic HCT, and 0.36% of those after autologous HCT.71 We generally recommend that women wait 2–5 years after HCT before attempting conception since rates of relapse are generally highest in the first two years after HCT. Another concern is the theoretical risk of recurrent malignancy because of disturbance of the graft-versus-leukemia effect, and some cases of recurrent chronic myeloid leukemia after conception have been reported.71 Pregnancy outcomes are generally good with no increase in the risk of fetal malformations, although these pregnancies are considered high risk because of higher maternal risks of pregnancy complications.71 Iron overload Iron overload is rare after autologous HCT72 but common after allogeneic HCT.73,74 Previous prospective studies showed that 30%–60% of long-term survivors of allogeneic HCT had elevated serum ferritin levels and 25%–50% had elevated liver iron concentration on T2* magnetic resonance imaging (MRI).73,74 Since serum ferritin does not specifically reflect iron overload and can be elevated in hepatic and systemic inflammation, additional testing is required if the ferritin is elevated. We favor transferrin saturation, which is widely available and defined as the ratio of serum iron concentration divided by total iron-binding capacity.75 Normal transferrin saturation is less than 50% in males and less than 45% in females. Patients with iron overload usually have saturation more than 60%. HFE genotyping is considered in patients with a family history of hemochromatosis and in patients of Northern or Western European ethnicity. When saturation is not elevated, other etiologies for an elevated ferritin including inflammation, metabolic syndrome, and alcoholism should be ruled out. The most accurate test of tissue iron concentration is liver biopsy, but the procedure is invasive and may cause serious complications. Thus, T2* MRI and other modalities (FerriScan and superconducting quantum interference device) have been increasingly used.76 Importantly, liver tests are often normal among long-term survivors with iron overload, so hepatitis and GvHD should also be considered when results of liver tests are elevated.77 Iron overload may cause cardiomyopathy. Studies of thalassemia patients showed that cardiomyopathy typically took more than ten years to be clinically evident,78 and that many patients improved with intensive chelation therapy.79 Although a prospective study and a meta-analysis showed no statistical association of liver iron concentration with mortality after allogeneic HCT,80,81 our practice is to start phlebotomy of 5 mL/kg or 250–300 mL every 3–4 weeks as long as hematocrit is more than 35% until serum ferritin falls below 1000 ng/mL. Deferasirox, an oral chelating agent, is considered for patients with anemia precluding phlebotomy. Liver diseases Late liver diseases include chronic hepatitis B, chronic hepatitis C, liver cirrhosis, nodular regenerative hyperplasia and focal nodular hyperplasia.77 Hepatitis B-infected patients have an increased risk of fulminant liver failure. One study reported a 35% risk of HBV reactivation after HCT even among patients with isolated anti-HBc antibodies, mostly during steroid treatment for GvHD.82 Patients treated with anti-CD20 antibodies have an increased risk of HBV reactivation. Antiviral prophylaxis using entecavir or lamivudine will prevent almost all fulminant cases if initiated before the start of conditioning regimens in patients with positive blood HBV DNA levels.83 Patients with latent HBV (i.e. anti-HBc+/HBV DNA−) should be monitored monthly with HBV DNA levels after HCT and antiviral treatment should be initiated when viremia is detected.83 Hepatitis C virus infection in HCT survivors almost always results in chronic hepatitis.84,85 Typically, asymptomatic elevation of alanine aminotransferase occurs 2–4 months after HCT, coinciding with tapering of immunosuppressive medications. There may be little liver-related mortality in the first ten years after HCT,84 but liver cirrhosis occurs later with a cumulative incidence of 4%–24% at 20 years.85,86 A large retrospective study showed that hepatitis C-infected patients had an increased risk of 2-year non-relapse mortality due to hepatic problems and bacterial infection.87 Antiviral therapy for HCV has not been given early after HCT, but may improve both oncological and hepatic outcomes after HCT.88 Ribavirin and interferon-based therapy have been used for patients who have discontinued all immunosuppressive medications without active GvHD, but it can cause pancytopenia and GvHD. Recently, highly effective and well tolerated direct acting antiviral agents with more than 90% rates of sustained virological response have been developed, and interferon-free regimens are now the treatments of choice.89,90 Nodular regenerative hyperplasia is a rare liver condition characterized by a widespread benign transformation of the hepatic parenchyma into small regenerative nodules.77 This process is usually asymptomatic unless portal hypertension develops. Focal nodular hyperplasia occurs in 12% of HCT survivors, and possibly reflects sinusoidal injury caused by myeloablative conditioning regimens.91 Kidney diseases Chronic kidney disease (CKD) is defined as an elevated serum creatinine level, or a decreased glomerular filtration rate (GFR) less than 60 mL/min/1.73 m2 for three months or longer.92 CKD occurs in approximately 20% of HCT recipients.93–95 There are three major etiologies of CKD after HCT: thrombotic microangiopathy (TMA), nephrotic syndrome and idiopathic CKD. Other etiologies include persistent acute kidney injury and BK virus nephropathy.96 Whenever possible, renal biopsy should be considered to accurately diagnose the etiology of CKD and to provide appropriate management.97 Thrombotic microangiopathy occurs in 2%–21% of patients after HCT, and is characterized by renal dysfunction, thrombocytopenia, neurological dysfunction, hemolytic anemia with schistocytes, elevated lactate dehydrogenase and decreased haptoglobin.98,99 Risk factors of TMA include TBI, calcineurin inhibitors, and acute and chronic GvHD.100–102 TMA-related kidney injury often improves with tapering or stopping calcineurin inhibitors, but full renal function is rarely restored.103 In some cases TMA did not improve until GvHD was treated.104 Efficacy of plasma exchange is limited.105 Nephrotic syndrome occurs in 6%–8% of patients after allogeneic HCT.106,107 Membranous nephropathy comprised 61% of cases, and minimal change disease comprised 22% of cases, with a median onset of 14 months and eight months after HCT, respectively.108 Mechanisms of membranous nephropathy are thought to be formation of immune complexes through allo- or auto-antibodies recognizing antigens expressed by the podocyte, while T cells are implicated with minimal change disease.109 Nephrotic syndrome after HCT is often associated with chronic GvHD and tapering of immunosuppressive medications. Initial treatment is prednisone 1 mg/kg/day in addition to calcineurin inhibitors. Complete response was observed in 90% of patients with minimal change in disease, but only in 27% of patients with membranous nephropathy.108 Refractory cases may be treated with rituximab or mycophenolate mofetil.110 Idiopathic CKD comprises most cases of CKD. Risk factors include acute GvHD, chronic GvHD, acute kidney injury, long-term use of calcineurin inhibitors and previous autologous HCT,94,111 suggesting that GvHD, accompanying treatment and inflammatory conditions may have pathogenic roles in this entity. Associations of TBI with risk of CKD have been controversial.94,112 ACE inhibitors and ARBs have been used to treat CKD and hypertension associated with CKD.113 Bone diseases Late complications of bone include osteopenia, osteoporosis and avascular necrosis (AVN).114 Osteoporosis has been reported in as many as 50% of HCT recipients.115,116 The diagnoses of osteopenia and osteoporosis are made by measuring T-scores with dual-energy X-ray absorptiometry. A T-score between −1.0 and −2.5 indicates osteopenia, and a T-score less than −2.5 or presence of a fragility fracture indicates osteoporosis.117 Multiple risk factors are implicated including chemotherapy, radiation, corticosteroids, calcineurin inhibitors, vitamin D deficiency, and gonadal failure.116,118 Bone loss occurs within 6–12 months after HCT, and recovery of bone mineral density (BMD) begins from the lumber spine, followed by a slower recovery in the femoral neck. The use of corticosteroids is the strongest risk factor for osteoporosis. General preventative recommendations include adequate intake of calcium of 1200 mg per day or over and vitamin D of 1000 IU (25 μg) per day or over, regular weight-bearing exercise, and avoidance of smoking and excessive alcohol. Bisphosphonates are the primary treatment for bone loss.119 Patients who are taking 5 mg or more daily prednisone-equivalent steroids for three months or more should have screening BMD tests for osteoporosis, and bisphosphonate treatment may be indicated until corticosteroid treatment is discontinued or for up to five years.120 Second-line treatment includes calcitonin, raloxifene, denusomab, romosozumab, and blosozumab, though their reported use in HCT recipients is limited and adverse effects may be more prominent than with the bisphosphonates. Avascular necrosis occurs in 4%–19% of HCT survivors with a cumulative incidence of 3%–10% at five years after HCT.121,122 AVN causes severe bone pain and bone destruction, causing significant impairment in quality of life. AVN typically affects the femoral heads, but sometimes affects other joints such as the knee and shoulders.21 Risk factors for AVN include corticosteroids, calcineurin inhibitors, older age and TBI conditioning.114 When AVN is suspected, diagnostic MRI should be performed. Early involvement of an orthopedic specialist is important for management of AVN, including conservative treatment, joint-preserving surgery and joint replacement surgery.21,114 Infectious diseases All HCT survivors have some degree of immunodeficiency, particularly during the first year after HCT.123 If patients are able to stop immunosuppressive medications without GvHD or recurrent disease, many recover adequate immune function by one year after HCT. Patients with chronic GvHD, however, remain immunodeficient and have a high risk of infections. Common late infections are caused by Pneumocystis jirovecii, encapsulated bacteria, fungi, varicella-zoster virus (VZV), cytomegalovirus, and respiratory viruses. Patients may report more frequent episodes of upper respiratory infections and sinusitis. All patients should receive prophylaxis against Pneumocystis jirovecii for at least one year after HCT or until 3–6 months after all immunosuppressive medication is discontinued, whichever occurs later. The preferred drug is trimethoprim-sulfamethoxazole, but dapsone or atovaquone could be substituted for patients who are allergic to or intolerant of trimethoprim-sulfamethoxazole. In particular, patients with chronic GvHD are highly susceptible to encapsulated bacteria such as Streptococcus pneumoniae, Haemophilus influenzae and Neisseria meningitidis due to low levels of opsonizing antibodies, low CD4+ T-cell counts, poor reticuloendothelial function and suppressive effects of immunosuppressive medications on phagocytosis. Vaccination against these bacteria is recommended.124 Efficacy of vaccination in increasing antibody levels has been shown in several prospective studies.125,126 Chemoprophylaxis is always recommended due to the unpredictable protection provided by vaccination. The first-line drug is trimethoprim-sulfamethoxazole, but if it is not tolerated, penicillin or azithromycin is substituted until 3–6 months after discontinuation of all immunosuppressive medications. Invasive fungal infection occurs in 1% of patients after autologous HCT and in 6%–8% of patients after allogeneic HCT.127 GvHD and long-term use of corticosteroids have been a major risk factor associated with onset of invasive fungal infection.128 As recommended in the European guidelines, mold prophylaxis with posaconazole or voriconazole may be considered for patients with GvHD requiring high-dose corticosteroid treatment.129 Varicella-zoster virus-seropositive patients should receive prophylaxis with acyclovir or valacyclovir during the first year after HCT or until six months after discontinuation of immunosuppressive medications. A standard dose of acyclovir is 800 mg twice daily,130 but some studies showed that 200 mg once daily was effective in preventing VZV reactivation.131 Acyclovir should be started empirically if the patient presents with an acute abdomen or hepatitis typical of fulminant visceral VZV infection.132 CMV monitoring in blood is continued beyond 100 days after HCT until one year for patients at risk of late CMV disease, including CMV-seropositive patients receiving high-dose corticosteroids, those who have already experienced CMV reactivation, and cord blood transplantation.133 Pre-emptive therapy is usually considered for CMV levels of 250 IU/mL or more (equivalent to ≥1000 copies/mL) or a positive antigenemia test. Community-acquired respiratory virus infections are an important cause of morbidity and mortality after HCT. The most frequent viruses include rhinovirus, respiratory syncytial virus (RSV), parainfluenza viruses (PIV), human metapneumovirus, and influenza viruses as these frequently cause lower respiratory tract disease associated with 12%–100% mortality.134 An immunodeficiency scoring index can predict severity of RSV infection.135 Aerosolized ribavirin showed efficacy in treating lower tract RSV after HCT.136 Combination therapy with immunomodulators such as intravenous immunoglobulin or palivizumab has been seen to have variable success.137 Treatment for PIV infection has not been established. Efficacy of ribavirin has been limited for patients with lower respiratory tract infection of PIV.138 Novel drugs such as a recombinant sialidase fusion protein and a hemagglutinin-neuraminidase inhibitor are under investigation.138 Solid cancers There is an increased risk of solid cancers following both autologous and allogeneic HCT compared with the general population. The cumulative incidence is 1%–6% at ten years after HCT, and continues to rise over time without a plateau.139–142 The most common sites include oral cavity, skin, breast and thyroid, but rates are also elevated in esophagus, liver, nervous system, bone and connective tissues compared with the general population.143 Myeloablative TBI, young age at HCT, chronic GvHD and prolonged immunosuppressive medications beyond two years are well-documented risk factors for many types of cancers.143 All HCT recipients should be advised of the risk of second cancers and should be encouraged to undergo recommended screening tests based on their predisposition.143 The 5-year overall survival rates after diagnosis of solid cancers varied by cancer site, with 88%–100% for thyroid, testis and melanoma, approximately 50% for breast, mouth, soft tissue and female reproductive organs, and 20% or less for bone, lower gastrointestinal tract, and central nervous system.144 These rates were similar to those of de novo cancers, except that rates were lower for female reproductive organs, bone, colorectum, and central nervous system, although further studies are warranted to confirm this observation. There is emerging evidence that human papilloma virus (HPV) is involved in the pathogenesis of squamous cell cancer after HCT.145,146 The efficacy of HPV vaccination in preventing squamous cell cancer after HCT remains to be determined in prospective studies.147 Neuropsychological effects Neuropsychological effects after HCT are being increasingly recognized and include, among others, depression, post-traumatic stress disorder, and neurocognitive deficits. Depression occurs in 12%–30% of HCT survivors and is more frequent in female patients, younger patients and those with poor social support, history of recurrent disease, chronic pain, and chronic GvHD.148 Post-traumatic stress disorder occurs in 28% of patients at six months after HCT and may persist for 5%–13% of cases, although its risk factors are not yet clear.148–150 Neurocognitive deficits, so called “chemo brain”, have adverse functional impacts on HCT survivors who return to work and daily activities that require short-term memory, information-processing speed, multitasking and co-ordination.151 Neuropsychological tests can help identify neurocognitive deficits. Most evidence is derived from studies of breast cancer survivors, with estimated rates of deficits ranging from 16% to 50% up to ten years after treatment.152,153 Potential mechanisms for chemotherapy-induced neurocognitive changes include cytokine and immune dysregulation, damage to DNA and telomere length through cytotoxic agents, oxidative stress and hormonal changes.154 In cases of HCT survivors, there may be additional deficits derived from neurological complications including nervous system infection (HHV-6, fungi, etc.), immune-mediated damage, and toxicities of calcineurin inhibitors such as TMA and posterior reversible encephalopathy syndrome. A prospective observational study showed that neurocognitive function declined substantially at 80 days after HCT, returned to pre-transplantation levels at one year, and continued to improve between one and five years after HCT, except for motor dexterity and verbal learning and retention.155 Mostly mild, neurocognitive dysfunction according to the Global Deficit Score persisted at five years in 42% of long-term survivors.155 Rehabilitation programs have succeeded in improving neurocognitive functions,156 and methylphenidate and modafinil have demonstrated variable efficacies to improve neurocognitive function in non-HCT cancer patients.157,158 Efficacies of these interventions remaine to be determined among HCT survivors. Influence of newer practices on late effects An understanding of the influence of newer practices such as cord blood transplantation, non-TBI or reduced-intensity conditioning regimens and older patients on the incidence and severity of late effects awaits longer follow up. For example, TBI is associated with an increased risk of many late effects such as cardiovascular diseases, COP, hypothyroidism, diabetes, dyslipidemia, infertility, TMA-related kidney injury, bone density loss, avascular necrosis, and secondary solid cancer.49,54,100,102,114,118,143,159,160 The use of non-TBI conditioning regimens might reduce the burden of these late effects among HCT survivors. Some studies found that cumulative incidences of late effects did not differ much after reduced-intensity regimens compared with myeloablative regimens,15,161 and reduced-intensity conditioning was associated with a higher risk of recurrent malignancy among patients with myeloid malignancy.162 One study showed that the risk of AVN was elevated after cord blood transplantation, but graft source had a limited influence on other long-term health status and QOL.163 Consensus guidelines for late effects and prevention behaviors Incidence, mortality, morbidity and management of individual late effects are summarized in Tables 1 and 2. Recognizing the importance of managing late effects after HCT, the Center for International Blood and Marrow Transplant Research (CIBMTR), the European Group for Blood and Marrow Transplantation (EBMT), and the American Society for Bone Marrow Transplantation (ASBMT) developed recommendations in 2006 for screening and prevention practices for HCT survivors.164 Consensus recommendations were up-dated in 2011 including other international transplant communities.21 The NIH convened working groups to formulate late effects initiatives in 2015.148,165–169 View inlineDownload powerpoint Table 1. Late effects after blood and marrow transplantation View inlineDownload powerpoint Table 2. Tests, preventive approaches and treatment of late effects. Despite higher levels of engagement with health care providers, HCT survivors had similar health and prevention behaviors as matched untransplanted controls, suggesting the need for further education of both HCT survivors and health practitioners.170 Major modifiable predictors of lower adherence to preventive care practices were concerns about medical costs and lack of knowledge.171 Conclusion While the number of HCT survivors is growing, there is no evidence that the burden of late effects is lessening. HCT survivors face myriad late effects that can limit their functioning, require prolonged or life-long medical treatment, reduce their quality of life and also shorten their survival. To the extent that the HCT procedure itself causes these late effects, the transplant community has a responsibility to appropriately monitor, treat and ultimately try to prevent late effects. Given the dispersion of survivors and the varied structure of health care, hematologists, oncologists, primary care physicians and medical subspecialists are all involved in providing this care. Further research is needed to understand the biology of late effects to help identify better prevention and treatment strategies
Dr. Ved Srivastava3 Likes6 Answers - Login to View the image
young female with white nails Differential Diagnosis
Dr. Neki Yadav3 Likes28 Answers
6 Likes